Enhancing Plant Disease Detection through Transfer Learning by Incorporating MemoryAugmented Networks and Meta-Learning Approaches

Dr. Mohana Priya C
{"title":"Enhancing Plant Disease Detection through Transfer Learning by Incorporating MemoryAugmented Networks and Meta-Learning Approaches","authors":"Dr. Mohana Priya C","doi":"10.18535/ijecs/v13i07.4852","DOIUrl":null,"url":null,"abstract":"Transfer learning has revolutionized automated plant disease detection by leveraging pre-trained convolutional neural networks (CNNs) on large-scale datasets like ImageNet. This paper explores advanced methodologies in transfer learning, focusing on the integration of memory-augmented networks and meta-learning approaches. These enhancements aim to improve model adaptation to new disease types and environmental conditions, thereby enhancing accuracy and robustness in agricultural applications. The paper reviews existing literature, discusses methodologies, and suggests future research directions to advance the field of AI-driven plant pathology. \n ","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v13i07.4852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer learning has revolutionized automated plant disease detection by leveraging pre-trained convolutional neural networks (CNNs) on large-scale datasets like ImageNet. This paper explores advanced methodologies in transfer learning, focusing on the integration of memory-augmented networks and meta-learning approaches. These enhancements aim to improve model adaptation to new disease types and environmental conditions, thereby enhancing accuracy and robustness in agricultural applications. The paper reviews existing literature, discusses methodologies, and suggests future research directions to advance the field of AI-driven plant pathology.  
结合记忆增强网络和元学习方法,通过迁移学习提高植物病害检测能力
通过在 ImageNet 等大规模数据集上利用预先训练好的卷积神经网络(CNN),迁移学习为植物病害自动检测带来了革命性的变化。本文探讨了迁移学习的先进方法,重点是记忆增强网络和元学习方法的整合。这些改进旨在提高模型对新疾病类型和环境条件的适应性,从而提高农业应用的准确性和鲁棒性。本文回顾了现有文献,讨论了相关方法,并提出了未来的研究方向,以推动人工智能驱动的植物病理学领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信