Smart Data Harvesting in Cache-Enabled MANETs: UAVs, Future Position Prediction, and Autonomous Path Planning

Umair B. Chaudhry, Chris Ian Phillips
{"title":"Smart Data Harvesting in Cache-Enabled MANETs: UAVs, Future Position Prediction, and Autonomous Path Planning","authors":"Umair B. Chaudhry, Chris Ian Phillips","doi":"10.1139/dsa-2024-0003","DOIUrl":null,"url":null,"abstract":"The task of gathering data from nodes within mobile ad-hoc wireless sensor networks presents an enduring challenge. Conventional strategies employ customized routing protocols tailored to these environments, with research focused on refining them for improved efficiency in terms of throughput and energy utilization. However, these elements are interconnected, and enhancements in one often come at the expense of the other. An alternative data collection approach involves the use of Unmanned Aerial Vehicles (UAVs). In contrast to traditional methods, UAVs directly collect data from mobile nodes, bypassing the need for routing. While existing research predominantly addresses static nodes, this paper proposes an evolutionary based, innovative path selection approach based on future position prediction of caching enabled mobile ad-hoc wireless sensor network nodes for UAV data collection, aimed at maximizing node encounters and gathering the most valuable information in a single trip. The proposed technique is evaluated for different movement models and parameter configurations.","PeriodicalId":202289,"journal":{"name":"Drone Systems and Applications","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drone Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/dsa-2024-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of gathering data from nodes within mobile ad-hoc wireless sensor networks presents an enduring challenge. Conventional strategies employ customized routing protocols tailored to these environments, with research focused on refining them for improved efficiency in terms of throughput and energy utilization. However, these elements are interconnected, and enhancements in one often come at the expense of the other. An alternative data collection approach involves the use of Unmanned Aerial Vehicles (UAVs). In contrast to traditional methods, UAVs directly collect data from mobile nodes, bypassing the need for routing. While existing research predominantly addresses static nodes, this paper proposes an evolutionary based, innovative path selection approach based on future position prediction of caching enabled mobile ad-hoc wireless sensor network nodes for UAV data collection, aimed at maximizing node encounters and gathering the most valuable information in a single trip. The proposed technique is evaluated for different movement models and parameter configurations.
支持缓存的城域网中的智能数据采集:无人机、未来位置预测和自主路径规划
从移动特设无线传感器网络中的节点收集数据是一项持久的挑战。传统策略采用为这些环境量身定制的路由协议,研究重点是改进路由协议,以提高吞吐量和能源利用效率。然而,这些要素是相互关联的,其中一个要素的增强往往会牺牲另一个要素。另一种数据收集方法是使用无人飞行器(UAV)。与传统方法不同的是,无人飞行器直接从移动节点收集数据,绕过了路由选择的需要。现有研究主要针对静态节点,而本文提出了一种基于进化的创新路径选择方法,该方法基于对启用缓存的移动 ad-hoc 无线传感器网络节点的未来位置预测,用于无人飞行器数据收集,旨在最大限度地增加节点相遇次数,并在单次行程中收集最有价值的信息。针对不同的移动模型和参数配置,对所提出的技术进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信