Zhuang Yan, Junyan Zhang, Ruogu Lu, Kunlun He, Xiuxing Li
{"title":"MedNER: Enhanced Named Entity Recognition in Medical Corpus via Optimized Balanced and Deep Active Learning","authors":"Zhuang Yan, Junyan Zhang, Ruogu Lu, Kunlun He, Xiuxing Li","doi":"10.1145/3678178","DOIUrl":null,"url":null,"abstract":"\n Ever-growing electronic medical corpora provide unprecedented opportunities for researchers to analyze patient conditions and drug effects. Meanwhile, severe challenges emerged in the large-scale electronic medical records process phase. Primarily, emerging words for medical terms, including informal descriptions, are difficult to recognize. Moreover, although deep models can help in entity extraction on medical texts, it requires large-scale labels which are time-intensive to obtain and not always available in the medical domain. However, when encountering a situation where massive unseen concepts appear, or labeled data is insufficient, the performance of existing algorithms will suffer an intolerable decline. In this paper, we propose a balanced and deep active learning framework (\n MedNER\n ) for Named Entity Recognition in the medical corpus to alleviate above problems. Specifically, to describe our selection strategy precisely, we first define the uncertainty of a medical sentence as a labeling loss predicted by a loss-prediction module and define diversity as the least text distance between pairs of sentences in a sample batch computed based on word-morpheme embeddings. Furthermore, aiming to make a trade-off between uncertainty and diversity, we formulate a\n Distinct-K\n optimization problem to maximize the slightest uncertainty and diversity of chosen sentences. Finally, we propose a threshold-based approximation selection algorithm,\n Distinct-K Filter\n , which selects the most beneficial training samples by balancing diversity and uncertainty. Extensive experimental results on real datasets demonstrate that\n MedNER\n significantly outperforms existing approaches.\n","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3678178","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ever-growing electronic medical corpora provide unprecedented opportunities for researchers to analyze patient conditions and drug effects. Meanwhile, severe challenges emerged in the large-scale electronic medical records process phase. Primarily, emerging words for medical terms, including informal descriptions, are difficult to recognize. Moreover, although deep models can help in entity extraction on medical texts, it requires large-scale labels which are time-intensive to obtain and not always available in the medical domain. However, when encountering a situation where massive unseen concepts appear, or labeled data is insufficient, the performance of existing algorithms will suffer an intolerable decline. In this paper, we propose a balanced and deep active learning framework (
MedNER
) for Named Entity Recognition in the medical corpus to alleviate above problems. Specifically, to describe our selection strategy precisely, we first define the uncertainty of a medical sentence as a labeling loss predicted by a loss-prediction module and define diversity as the least text distance between pairs of sentences in a sample batch computed based on word-morpheme embeddings. Furthermore, aiming to make a trade-off between uncertainty and diversity, we formulate a
Distinct-K
optimization problem to maximize the slightest uncertainty and diversity of chosen sentences. Finally, we propose a threshold-based approximation selection algorithm,
Distinct-K Filter
, which selects the most beneficial training samples by balancing diversity and uncertainty. Extensive experimental results on real datasets demonstrate that
MedNER
significantly outperforms existing approaches.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.