A Two-Dimensional Discrete Memristor Map: Analysis and Implementation

Qian Xiang, Yunzhu Shen, Shuangshuang Peng, Mengqiang Liu
{"title":"A Two-Dimensional Discrete Memristor Map: Analysis and Implementation","authors":"Qian Xiang, Yunzhu Shen, Shuangshuang Peng, Mengqiang Liu","doi":"10.1142/s0218127424501244","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel two-dimensional discrete memristor map that is based on a discrete memristor model and a sine–arcsine one-dimensional map. First, an analysis is conducted on the memristor model to understand its characteristics. Then, the model is coupled with the sine–arcsine one-dimensional map to achieve the two-dimensional discrete memristor map. Our investigation reveals the presence of coexisting attractors and hyperchaotic attractors as the bifurcation parameters vary. Numerical simulations show that the discrete memristors effectively enhance the complexity of chaos in the sine–arcsine map. Furthermore, a digital circuit is designed to experimentally verify the new chaotic system. The research results can enrich the theoretical analysis and circuit implementation of chaos.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel two-dimensional discrete memristor map that is based on a discrete memristor model and a sine–arcsine one-dimensional map. First, an analysis is conducted on the memristor model to understand its characteristics. Then, the model is coupled with the sine–arcsine one-dimensional map to achieve the two-dimensional discrete memristor map. Our investigation reveals the presence of coexisting attractors and hyperchaotic attractors as the bifurcation parameters vary. Numerical simulations show that the discrete memristors effectively enhance the complexity of chaos in the sine–arcsine map. Furthermore, a digital circuit is designed to experimentally verify the new chaotic system. The research results can enrich the theoretical analysis and circuit implementation of chaos.
二维离散晶体管图:分析与实现
本文基于离散忆阻器模型和正弦-余弦一维图,提出了一种新型二维离散忆阻器图。首先,我们分析了忆阻器模型,以了解其特性。然后,将该模型与正弦-余弦一维图耦合,得到二维离散忆阻器图。我们的研究发现,随着分岔参数的变化,存在共存吸引子和超混沌吸引子。数值模拟表明,离散忆阻器有效地提高了正弦-正弦图中混沌的复杂性。此外,还设计了一个数字电路来实验验证新的混沌系统。这些研究成果可以丰富混沌的理论分析和电路实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信