N. Delaporte, Alexis Perea, S. Collin-Martin, Mireille Léonard, Julie Matton, Hendrix Demers, D. Clément, Vincent Gariépy, Wen Zhu
{"title":"Designing a Stable Alloy Interlayer on Li Metal Anodes for Fast Charging of All-Solid-State Li Metal Batteries","authors":"N. Delaporte, Alexis Perea, S. Collin-Martin, Mireille Léonard, Julie Matton, Hendrix Demers, D. Clément, Vincent Gariépy, Wen Zhu","doi":"10.3390/batteries10070253","DOIUrl":null,"url":null,"abstract":"The deposition of a thin LixSny alloy layer by plasma vapor deposition (PVD) on the surface of a Li foil is reported. The formation of a Li-rich alloy is confirmed by the volume expansion (up to 380%) of the layer and by the disappearance of metallic Sn peaks in the X-ray diffractogram. The layer has a much higher hardness than bare Li and can withstand aggressive cycling at 1C. Post-mortem scanning electron microscope observations revealed that the alloy layer remains intact even after fast cycling for hundreds of cycles. A concept of double modification by adding a thin ceramic/polymer layer deposited by a doctor blade on top of the LixSny layer was also reported to be efficient to reach long-term stability for 500 cycles at C/3. Finally, a post-treatment after Sn deposition consisting of a plasma cleaning of the LixSny alloy layer led to a strong improvement in the cycling performance at 1C. The surface is smoother and less oxidized after this treatment. The combination of a Li-rich alloy interlayer, the increase in hardness at the electrolyte/Li interface, and the absence of dissolution of the layer during cycling at high C-rates are reasons for such an improvement in electrochemical performance.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10070253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The deposition of a thin LixSny alloy layer by plasma vapor deposition (PVD) on the surface of a Li foil is reported. The formation of a Li-rich alloy is confirmed by the volume expansion (up to 380%) of the layer and by the disappearance of metallic Sn peaks in the X-ray diffractogram. The layer has a much higher hardness than bare Li and can withstand aggressive cycling at 1C. Post-mortem scanning electron microscope observations revealed that the alloy layer remains intact even after fast cycling for hundreds of cycles. A concept of double modification by adding a thin ceramic/polymer layer deposited by a doctor blade on top of the LixSny layer was also reported to be efficient to reach long-term stability for 500 cycles at C/3. Finally, a post-treatment after Sn deposition consisting of a plasma cleaning of the LixSny alloy layer led to a strong improvement in the cycling performance at 1C. The surface is smoother and less oxidized after this treatment. The combination of a Li-rich alloy interlayer, the increase in hardness at the electrolyte/Li interface, and the absence of dissolution of the layer during cycling at high C-rates are reasons for such an improvement in electrochemical performance.