{"title":"Hybrid Encryption Model for Secured Three-Phase Authentication Protocol in IoT","authors":"Amr Munshi, Bandar Alshawi","doi":"10.3390/jsan13040041","DOIUrl":null,"url":null,"abstract":"The Internet of things (IoT) has recently received a great deal of attention, and there has been a large increase in the number of IoT devices owing to its significance in current communication networks. In addition, the validation of devices is an important concern and a major safety demand in IoT systems, as any faults in the authentication or identification procedure will lead to threatening attacks that cause the system to close. In this study, a new, three-phase authentication protocol in IoT is implemented. The initial phase concerns the user registration phase, in which encryption takes place with a hybrid Elliptic Curve Cryptography (ECC)–Advanced Encryption Standard (AES) model with an optimization strategy, whereby key generation is optimally accomplished via a Self-Improved Aquila Optimizer (SI-AO). The second and third phases include the login process and the authentication phase, in which information flow control-based authentication is conducted. Finally, decryption is achieved based on the hybrid ECC–AES model. The employed scheme’s improvement is established using various metrics.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of things (IoT) has recently received a great deal of attention, and there has been a large increase in the number of IoT devices owing to its significance in current communication networks. In addition, the validation of devices is an important concern and a major safety demand in IoT systems, as any faults in the authentication or identification procedure will lead to threatening attacks that cause the system to close. In this study, a new, three-phase authentication protocol in IoT is implemented. The initial phase concerns the user registration phase, in which encryption takes place with a hybrid Elliptic Curve Cryptography (ECC)–Advanced Encryption Standard (AES) model with an optimization strategy, whereby key generation is optimally accomplished via a Self-Improved Aquila Optimizer (SI-AO). The second and third phases include the login process and the authentication phase, in which information flow control-based authentication is conducted. Finally, decryption is achieved based on the hybrid ECC–AES model. The employed scheme’s improvement is established using various metrics.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.