Reaction Function for Financial Market Reacting to Events or Information

Q1 Decision Sciences
Bo Li, Guangle Du
{"title":"Reaction Function for Financial Market Reacting to Events or Information","authors":"Bo Li,&nbsp;Guangle Du","doi":"10.1007/s40745-024-00565-w","DOIUrl":null,"url":null,"abstract":"<div><p>Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard &amp; Poor’s 500 Index (SPX or S &amp;P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00565-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard & Poor’s 500 Index (SPX or S &P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.

Abstract Image

金融市场对事件或信息的反应函数
观察表明,金融市场中股票收益的分布通常不符合正态分布,而是表现出峰值高、尾部肥大和偏差等特征。在本文中,我们假设事件或信息对价格的影响服从正态分布,而金融市场往往对事件或信息反应过度或反应不足,从而导致股票收益率的非正态分布。基于上述假设,我们首次提出了金融市场对事件或信息的反应函数,并在此基础上建立了描述实际股票收益率分布的模型。我们对中国证券指数 300(沪深 300)、标准普尔 500 指数(SPX 或 S&P 500)和日经 225 指数(N225)在不同时间尺度上的收益率进行分析后发现,金融市场往往对影响较小的事件或信息反应不足,对影响相对较大的事件或信息反应过度,对正面事件或信息的反应略强于负面事件或信息。此外,金融市场和回报时间尺度的不同也会影响反应函数的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信