SD-GPSR: A Software-Defined Greedy Perimeter Stateless Routing Method Based on Geographic Location Information

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2024-07-17 DOI:10.3390/fi16070251
Shaopei Gao, Qiang Liu, Junjie Zeng, Li Li
{"title":"SD-GPSR: A Software-Defined Greedy Perimeter Stateless Routing Method Based on Geographic Location Information","authors":"Shaopei Gao, Qiang Liu, Junjie Zeng, Li Li","doi":"10.3390/fi16070251","DOIUrl":null,"url":null,"abstract":"To mitigate the control overhead of Software-Defined Mobile Ad Hoc Networks (SD-MANETs), this paper proposes a novel approach, termed Software-Defined Greedy Perimeter Stateless Routing (SD-GPSR), which integrates geographical location information. SD-GPSR optimizes routing functions by decentralizing them within the data plane of SD-MANET, utilizing the geographic location information of nodes to enhance routing efficiency. The controller is primarily responsible for providing location services and facilitating partial centralized decision-making. Within the data plane, nodes employ an enhanced distance and angle-based greedy forwarding algorithm, denoted as GPSR_DA, to efficiently forward data. Additionally, to address the issue of routing voids in the data plane, we employ the A* algorithm to compute an optimal routing path that circumvents such voids. Finally, we conducted a comparative analysis with several state-of-the-art approaches. The evaluation experiments demonstrate that SD-GPSR significantly reduces the control overhead of the network. Simultaneously, there is a notable improvement in both end-to-end latency and packet loss rate across the network.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16070251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the control overhead of Software-Defined Mobile Ad Hoc Networks (SD-MANETs), this paper proposes a novel approach, termed Software-Defined Greedy Perimeter Stateless Routing (SD-GPSR), which integrates geographical location information. SD-GPSR optimizes routing functions by decentralizing them within the data plane of SD-MANET, utilizing the geographic location information of nodes to enhance routing efficiency. The controller is primarily responsible for providing location services and facilitating partial centralized decision-making. Within the data plane, nodes employ an enhanced distance and angle-based greedy forwarding algorithm, denoted as GPSR_DA, to efficiently forward data. Additionally, to address the issue of routing voids in the data plane, we employ the A* algorithm to compute an optimal routing path that circumvents such voids. Finally, we conducted a comparative analysis with several state-of-the-art approaches. The evaluation experiments demonstrate that SD-GPSR significantly reduces the control overhead of the network. Simultaneously, there is a notable improvement in both end-to-end latency and packet loss rate across the network.
SD-GPSR:基于地理位置信息的软件定义贪婪周边无状态路由方法
为减轻软件定义移动 Ad Hoc 网络(SD-MANET)的控制开销,本文提出了一种整合了地理位置信息的新方法,即软件定义贪婪周边无状态路由(SD-GPSR)。SD-GPSR 通过将路由功能分散在 SD-MANET 的数据平面内来优化路由功能,利用节点的地理位置信息来提高路由效率。控制器主要负责提供定位服务和促进部分集中决策。在数据平面内,节点采用基于距离和角度的增强型贪婪转发算法(称为 GPSR_DA)来有效转发数据。此外,为了解决数据平面的路由空洞问题,我们采用了 A* 算法来计算绕过这些空洞的最佳路由路径。最后,我们与几种最先进的方法进行了比较分析。评估实验表明,SD-GPSR 显著降低了网络的控制开销。同时,整个网络的端到端延迟和丢包率都有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信