Fertilizer and Crop Yield Prediction using Machine Learning

Dr. T. Subburaj, Chandana A S
{"title":"Fertilizer and Crop Yield Prediction using Machine Learning","authors":"Dr. T. Subburaj, Chandana A S","doi":"10.48175/ijarsct-19183","DOIUrl":null,"url":null,"abstract":"The agricultural sector is indispensable to feeding the growing global population, making efficient crop management and yield prediction imperative. Traditional farming practices often rely on subjective decision-making and generalized fertilizer application methods, leading to suboptimal resource utilization and yield outcomes. In this research, we introduce an innovative method Utilizing the capability the bunch of algorithms introduced for machine learning tasks to precise fertilizer recommendation and crop yield prediction. The developed system provides farmers with personalized fertilizer recommendations tailored to their specific soil and crop requirements, thereby minimizing waste and maximizing yield potential. Additionally, real-time monitoring and feedback mechanisms enable adaptive adjustments throughout the growing season, ensuring timely interventions to mitigate adverse outcomes and optimize productivity","PeriodicalId":472960,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.48175/ijarsct-19183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The agricultural sector is indispensable to feeding the growing global population, making efficient crop management and yield prediction imperative. Traditional farming practices often rely on subjective decision-making and generalized fertilizer application methods, leading to suboptimal resource utilization and yield outcomes. In this research, we introduce an innovative method Utilizing the capability the bunch of algorithms introduced for machine learning tasks to precise fertilizer recommendation and crop yield prediction. The developed system provides farmers with personalized fertilizer recommendations tailored to their specific soil and crop requirements, thereby minimizing waste and maximizing yield potential. Additionally, real-time monitoring and feedback mechanisms enable adaptive adjustments throughout the growing season, ensuring timely interventions to mitigate adverse outcomes and optimize productivity
利用机器学习预测肥料和作物产量
要养活日益增长的全球人口,农业部门不可或缺,因此高效的作物管理和产量预测势在必行。传统的耕作方法往往依赖于主观决策和笼统的施肥方法,导致资源利用和产量结果不尽人意。在这项研究中,我们引入了一种创新方法,即利用机器学习任务中引入的一系列算法的能力来进行精确的肥料推荐和作物产量预测。所开发的系统可为农民提供针对其特定土壤和作物需求的个性化肥料建议,从而最大限度地减少浪费,提高潜在产量。此外,实时监测和反馈机制可在整个生长季节进行适应性调整,确保及时干预,减轻不利影响,优化生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信