Trusted Computing and Privacy Protection of Computer Internet of Things Nodes Based on Deep Fuzzy Control of Dynamic Learning Rate

Q3 Computer Science
Yufei Sun, Annagiulia Pezzola
{"title":"Trusted Computing and Privacy Protection of Computer Internet of Things Nodes Based on Deep Fuzzy Control of Dynamic Learning Rate","authors":"Yufei Sun, Annagiulia Pezzola","doi":"10.4018/ijfsa.348655","DOIUrl":null,"url":null,"abstract":"Under the background of mobile Internet of Things, this paper focuses on the solutions of trusted computing and privacy protection of Internet of Things nodes. Based on the research of existing mainstream service discovery protocols and the deep fuzzy control theory of dynamic learning rate, this paper proposes a trusted computing algorithm for Internet of Things nodes in mobile Internet of Things,which takes into account service quality and user preference.This paper combines the depth fuzzy control model of IoT nodes proposed before, uses a normal data set to train it, and then makes it generate and play the prediction residuals. It will be further used to build a privacy protection model and realize the anomaly detection of privacy protection data in the Internet of Things. This paper designs and implements a trusted computing system using the Internet of Things platform,which has been tested. Experimental results show that, compared with previous elastic matching algorithms, the precision and recall of the new algorithm proposed in this paper are improved.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.348655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Under the background of mobile Internet of Things, this paper focuses on the solutions of trusted computing and privacy protection of Internet of Things nodes. Based on the research of existing mainstream service discovery protocols and the deep fuzzy control theory of dynamic learning rate, this paper proposes a trusted computing algorithm for Internet of Things nodes in mobile Internet of Things,which takes into account service quality and user preference.This paper combines the depth fuzzy control model of IoT nodes proposed before, uses a normal data set to train it, and then makes it generate and play the prediction residuals. It will be further used to build a privacy protection model and realize the anomaly detection of privacy protection data in the Internet of Things. This paper designs and implements a trusted computing system using the Internet of Things platform,which has been tested. Experimental results show that, compared with previous elastic matching algorithms, the precision and recall of the new algorithm proposed in this paper are improved.
基于动态学习率深度模糊控制的计算机物联网节点可信计算与隐私保护
在移动物联网背景下,本文重点研究了物联网节点可信计算和隐私保护的解决方案。本文在研究现有主流服务发现协议的基础上,结合动态学习率的深度模糊控制理论,提出了一种兼顾服务质量和用户偏好的移动物联网物联网节点可信计算算法,并结合之前提出的物联网节点深度模糊控制模型,使用正常数据集对其进行训练,使其产生并发挥预测残差。它将进一步用于建立隐私保护模型,实现物联网隐私保护数据的异常检测。本文利用物联网平台设计并实现了一个可信计算系统,并进行了测试。实验结果表明,与以往的弹性匹配算法相比,本文提出的新算法的精度和召回率都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
65
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信