A Hybrid Malware Detection System for Enhanced Cloud Security Utilizing Trust-Based Glow-Worm Swarm Optimization and Recurrent Deep Neural Networks

Q4 Mathematics
R. Swathi, Sivakumar Depuru, M. Sakthivel, S. Sivanantham, K. Amala, Pavan Kumar
{"title":"A Hybrid Malware Detection System for Enhanced Cloud Security Utilizing Trust-Based Glow-Worm Swarm Optimization and Recurrent Deep Neural Networks","authors":"R. Swathi, Sivakumar Depuru, M. Sakthivel, S. Sivanantham, K. Amala, Pavan Kumar","doi":"10.52783/cana.v31.994","DOIUrl":null,"url":null,"abstract":"User credentials are vulnerable to exposure in demilitarized zones due to software vulnerabilities and hardware threats. This research aims to mitigate these risks by proposing a sophisticated trust-based malware detection (T-MALWARE DETECTION) method that can accurately classify data. The proposed system utilizes an enhanced Glow-Worm Swarm Optimization (IGWSO) technique to efficiently cluster datasets. To classify potential intrusions and assign trust levels to cloud data after clustering, a Recurrent Neural Network (RNN) approach is employed. The effectiveness of the Trust-oriented Malware Detection System (T-MALWARE DETECTIONS) is evaluated using metrics such as detection rate, precision, recall, and F-measure. This system is developed using Java and the CloudSimulator (CloudSim) tool, allowing for a thorough evaluation of its performance in comparison to contemporary state-of-the-art systems.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":"135 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

User credentials are vulnerable to exposure in demilitarized zones due to software vulnerabilities and hardware threats. This research aims to mitigate these risks by proposing a sophisticated trust-based malware detection (T-MALWARE DETECTION) method that can accurately classify data. The proposed system utilizes an enhanced Glow-Worm Swarm Optimization (IGWSO) technique to efficiently cluster datasets. To classify potential intrusions and assign trust levels to cloud data after clustering, a Recurrent Neural Network (RNN) approach is employed. The effectiveness of the Trust-oriented Malware Detection System (T-MALWARE DETECTIONS) is evaluated using metrics such as detection rate, precision, recall, and F-measure. This system is developed using Java and the CloudSimulator (CloudSim) tool, allowing for a thorough evaluation of its performance in comparison to contemporary state-of-the-art systems.
利用基于信任的萤火虫群优化和递归深度神经网络增强云安全的混合恶意软件检测系统
由于软件漏洞和硬件威胁,用户凭证在非军事区很容易暴露。本研究旨在通过提出一种复杂的基于信任的恶意软件检测(T-MALWARE DETECTION)方法来降低这些风险,该方法可以对数据进行准确分类。所提出的系统利用增强型光辉虫群优化(IGWSO)技术对数据集进行有效聚类。为了对潜在入侵进行分类,并在聚类后为云数据分配信任级别,系统采用了循环神经网络(RNN)方法。以信任为导向的恶意软件检测系统(T-MALWARE DETECTIONS)的有效性使用检测率、精确度、召回率和 F-measure 等指标进行评估。该系统是使用 Java 和云模拟器(CloudSim)工具开发的,与当代最先进的系统相比,可以对其性能进行全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信