Jitao Cai, Jiansong Wu, Yanzhu Hu, Ziqi Han, Yuefei Li, Ming Fu, Xiaofu Zou, Xin Wang
{"title":"Digital twin-based modeling of natural gas leakage and dispersion in urban utility tunnels","authors":"Jitao Cai, Jiansong Wu, Yanzhu Hu, Ziqi Han, Yuefei Li, Ming Fu, Xiaofu Zou, Xin Wang","doi":"10.12688/digitaltwin.17963.1","DOIUrl":null,"url":null,"abstract":"Background Unexpected leakage accidents of the natural gas pipeline inside urban utility tunnels can pose great threats to public safety, property, and the environment. It highlights the modeling of natural gas leakage and dispersion dynamics, especially from a digital twin implementation perspective facilitating effective emergency response in a data-driven way. Methods In this study, a digital twin-based emergency response framework for gas leakage accidents in urban utility tunnels is proposed. Within this framework, the data-calibrated gas concentration prediction (DC-GCP) model is developed by integrating the Lattice Boltzmann Method (LBM) with data assimilation (DA) techniques. This combination enables accurate spatiotemporal predictions of gas concentrations, even with a prior or inaccurate gas leakage source term. Specifically, we develop a high-performance LBM-based gas concentration prediction model using the parallel programming language Taichi Lang. Based on this model, real-time integration of gas sensor data from utility tunnels is achieved through the DA algorithm. Therefore, the predicted results can be calibrated by the continuous data in the absence of complete source term information. Furthermore, a widely used twin experiment and statistical performance measures (SPMs) are used to evaluate and validate the effectiveness of the proposed approach. Results The results show that all SPMs progressively converge towards their ideal values as calibration progresses. And both the gas concentration predictions and the source term estimations can be calibrated effectively by the proposed approach, achieving a relative error of less than 5%. Conclusions This study helps for dynamic risk assessment and emergency response of natural gas leakage accidents, as well as facilitating the implementation of predictive digital twin in utility tunnels.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17963.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background Unexpected leakage accidents of the natural gas pipeline inside urban utility tunnels can pose great threats to public safety, property, and the environment. It highlights the modeling of natural gas leakage and dispersion dynamics, especially from a digital twin implementation perspective facilitating effective emergency response in a data-driven way. Methods In this study, a digital twin-based emergency response framework for gas leakage accidents in urban utility tunnels is proposed. Within this framework, the data-calibrated gas concentration prediction (DC-GCP) model is developed by integrating the Lattice Boltzmann Method (LBM) with data assimilation (DA) techniques. This combination enables accurate spatiotemporal predictions of gas concentrations, even with a prior or inaccurate gas leakage source term. Specifically, we develop a high-performance LBM-based gas concentration prediction model using the parallel programming language Taichi Lang. Based on this model, real-time integration of gas sensor data from utility tunnels is achieved through the DA algorithm. Therefore, the predicted results can be calibrated by the continuous data in the absence of complete source term information. Furthermore, a widely used twin experiment and statistical performance measures (SPMs) are used to evaluate and validate the effectiveness of the proposed approach. Results The results show that all SPMs progressively converge towards their ideal values as calibration progresses. And both the gas concentration predictions and the source term estimations can be calibrated effectively by the proposed approach, achieving a relative error of less than 5%. Conclusions This study helps for dynamic risk assessment and emergency response of natural gas leakage accidents, as well as facilitating the implementation of predictive digital twin in utility tunnels.
期刊介绍:
Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.
The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches.
The scope of Digital Twin includes, but is not limited to, the following areas:
● Digital twin concepts, architecture, and frameworks
● Digital twin theory and method
● Digital twin key technologies and tools
● Digital twin applications and case studies
● Digital twin implementation
● Digital twin services
● Digital twin security
● Digital twin standards
Digital twin also focuses on applications within and across broad sectors including:
● Smart manufacturing
● Aviation and aerospace
● Smart cities and construction
● Healthcare and medicine
● Robotics
● Shipping, vehicles and railways
● Industrial engineering and engineering management
● Agriculture
● Mining
● Power, energy and environment
Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.