Calibrating Car-Following Models Using SUMO-in-the-Loop and Vehicle Trajectories From Roadside Radar

Max Schrader, Arya Karnik, Alexander Hainen, Joshua A. Bittle
{"title":"Calibrating Car-Following Models Using SUMO-in-the-Loop and Vehicle Trajectories From Roadside Radar","authors":"Max Schrader, Arya Karnik, Alexander Hainen, Joshua A. Bittle","doi":"10.52825/scp.v5i.1127","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative calibration method for car-following (CF) models in the Simulation of Urban MObility (SUMO) using real-world trajectory data from a 1.5 km signalized urban corridor, captured by roadside radars. By applying a sophisticated track-level association and fusion methodology, the study extends trajectory analysis beyond individual radar fields of view. The enhanced data is then utilized to refine the Krauss, IDM, and W99 CF models within SUMO, addressing the literature gap by integrating SUMO into the calibration loop, thereby accommodating the simulator's integration scheme and any model adaptations. The research identifies that default SUMO models tend to exhibit shorter time headways compared to real-world data, with calibration effectively reducing this discrepancy. Moreover, the W99 model, despite its unrealistic acceleration profiles when calibrated without considering acceleration, most accurately captures the higher-end energy consumption distribution. Conversely, the IDM model, with its default parameters, provides the closest approximation to observed acceleration behaviors, highlighting the nuanced performance of CF models in traffic simulation and their implications for energy consumption estimation. Detailed results of optimized parameters for each CF model are provided in appendix in addition to distribution information that may be useful for other modelers to use directly or other datasets to be compared in the future (including expansion of the work to include vehicle classification).","PeriodicalId":439794,"journal":{"name":"SUMO Conference Proceedings","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUMO Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/scp.v5i.1127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an innovative calibration method for car-following (CF) models in the Simulation of Urban MObility (SUMO) using real-world trajectory data from a 1.5 km signalized urban corridor, captured by roadside radars. By applying a sophisticated track-level association and fusion methodology, the study extends trajectory analysis beyond individual radar fields of view. The enhanced data is then utilized to refine the Krauss, IDM, and W99 CF models within SUMO, addressing the literature gap by integrating SUMO into the calibration loop, thereby accommodating the simulator's integration scheme and any model adaptations. The research identifies that default SUMO models tend to exhibit shorter time headways compared to real-world data, with calibration effectively reducing this discrepancy. Moreover, the W99 model, despite its unrealistic acceleration profiles when calibrated without considering acceleration, most accurately captures the higher-end energy consumption distribution. Conversely, the IDM model, with its default parameters, provides the closest approximation to observed acceleration behaviors, highlighting the nuanced performance of CF models in traffic simulation and their implications for energy consumption estimation. Detailed results of optimized parameters for each CF model are provided in appendix in addition to distribution information that may be useful for other modelers to use directly or other datasets to be compared in the future (including expansion of the work to include vehicle classification).
利用 SUMO-in-the-Loop 和路边雷达的车辆轨迹校准汽车跟踪模型
本文利用路边雷达捕捉到的 1.5 公里信号灯控制城市走廊的实际轨迹数据,提出了一种创新的校准方法,用于城市移动性仿真(SUMO)中的汽车跟随(CF)模型。通过应用复杂的轨迹级关联和融合方法,该研究将轨迹分析扩展到了单个雷达视场之外。然后利用增强的数据在 SUMO 中改进 Krauss、IDM 和 W99 CF 模型,通过将 SUMO 集成到校准环路中解决文献空白问题,从而适应模拟器的集成方案和任何模型调整。研究发现,与真实世界的数据相比,默认的 SUMO 模型往往表现出较短的时间航向,而校准可有效减少这种差异。此外,W99 模型尽管在不考虑加速度的情况下进行校准时会出现不切实际的加速度曲线,但却能最准确地捕捉高端能耗分布。相反,采用默认参数的 IDM 模型与观察到的加速度行为最为接近,这凸显了 CF 模型在交通仿真中的细微表现及其对能耗估算的影响。附录中提供了每个 CF 模型优化参数的详细结果,此外还提供了分布信息,这些信息可能对其他建模人员直接使用或未来比较其他数据集(包括将工作扩展到车辆分类)有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信