Potential Application of Selenium and Copper Nanoparticles in Improving Growth, Quality, and Physiological Characteristics of Strawberry under Drought Stress
Aichun Liu, Wenfei Xiao, Wenguo Lai, Jianrong Wang, Xiaoyuan Li, Hong Yu, Yan Zha
{"title":"Potential Application of Selenium and Copper Nanoparticles in Improving Growth, Quality, and Physiological Characteristics of Strawberry under Drought Stress","authors":"Aichun Liu, Wenfei Xiao, Wenguo Lai, Jianrong Wang, Xiaoyuan Li, Hong Yu, Yan Zha","doi":"10.3390/agriculture14071172","DOIUrl":null,"url":null,"abstract":"Drought stress can reduce strawberry yield and quality and is one of the main abiotic factors restricting strawberry production in China. Nano-agricultural technology has significant regulatory effects in improving crop yield and quality and reducing agricultural environmental pollution. We performed a pot experiment using FenYu No. 1 strawberry and applied copper nanoparticles (CuNPs) and selenium NPs (SeNPs) to study their effects on the growth, quality, photosynthetic parameter indexes, and physiological characteristics of strawberry plants under drought stress. The growth and photosynthesis of strawberry plants were significant adversely affected by moderate drought stress (DS, 60% field capacity (FC)) and severe drought stress (SS, 25% FC). Compared with normal water-holding conditions, the application of CuNPs, SeNPs, and their combination effectively increased the agronomic traits of strawberry plants; improved fruit quality; and enhanced the content of photosynthetic pigments (chlorophyll a, chlorophyll b, and total chlorophyll), photosynthetic characteristic parameters, chlorophyll fluorescence parameters, and water-use efficiency. In addition, the exogenous application of CuNPs and SeNPs improved the drought tolerance of plants by increasing the activities of antioxidant enzymes catalase, peroxidase, and superoxide dismutase, and decreasing the malondialdehyde content, with the following overall trend among the treatments: control < CuNPs < SeNPs < CuNPs + SeNPs. The results of the principal component analysis showed that the two extracted principal components could reflect 85.54% of the information of the original data, leaf photosynthetic pigments, photosynthetic characteristic parameters, chlorophyll fluorescence parameters, and strawberry agronomic traits indexes and could be used as the primary indexes for evaluating the improvement of strawberry growth by nanofertilizers under drought-stress conditions. Taken together, our results indicate that nanofertilizers have potential for improving the growth, quality, and physiological characteristics of strawberries under drought stress.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress can reduce strawberry yield and quality and is one of the main abiotic factors restricting strawberry production in China. Nano-agricultural technology has significant regulatory effects in improving crop yield and quality and reducing agricultural environmental pollution. We performed a pot experiment using FenYu No. 1 strawberry and applied copper nanoparticles (CuNPs) and selenium NPs (SeNPs) to study their effects on the growth, quality, photosynthetic parameter indexes, and physiological characteristics of strawberry plants under drought stress. The growth and photosynthesis of strawberry plants were significant adversely affected by moderate drought stress (DS, 60% field capacity (FC)) and severe drought stress (SS, 25% FC). Compared with normal water-holding conditions, the application of CuNPs, SeNPs, and their combination effectively increased the agronomic traits of strawberry plants; improved fruit quality; and enhanced the content of photosynthetic pigments (chlorophyll a, chlorophyll b, and total chlorophyll), photosynthetic characteristic parameters, chlorophyll fluorescence parameters, and water-use efficiency. In addition, the exogenous application of CuNPs and SeNPs improved the drought tolerance of plants by increasing the activities of antioxidant enzymes catalase, peroxidase, and superoxide dismutase, and decreasing the malondialdehyde content, with the following overall trend among the treatments: control < CuNPs < SeNPs < CuNPs + SeNPs. The results of the principal component analysis showed that the two extracted principal components could reflect 85.54% of the information of the original data, leaf photosynthetic pigments, photosynthetic characteristic parameters, chlorophyll fluorescence parameters, and strawberry agronomic traits indexes and could be used as the primary indexes for evaluating the improvement of strawberry growth by nanofertilizers under drought-stress conditions. Taken together, our results indicate that nanofertilizers have potential for improving the growth, quality, and physiological characteristics of strawberries under drought stress.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.