On the properties of multivariate isotropic Random fields on the Ball

Q4 Mathematics
G. Cleanthous
{"title":"On the properties of multivariate isotropic Random fields on the Ball","authors":"G. Cleanthous","doi":"10.3842/tsp-1833768554-46","DOIUrl":null,"url":null,"abstract":"\nWe consider multivariate isotropic random fields on the ball Bd.\nWe first study their regularity properties in terms of Sobolev spaces.\nWe further derive conditions guaranteeing the Hölder continuity of their covariance kernels and we prove the existence of sample Hölder continuous modifications for Gaussian random fields.\nFurthermore, we measure the error of truncated approximations of the corresponding series' representations.\nMoreover our developments are supported by numerical experiments.\nThe majority of our results are new for multivariate random fields indexed over other domains, too.\nWe express some of them for the case of the sphere.\n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/tsp-1833768554-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

We consider multivariate isotropic random fields on the ball Bd. We first study their regularity properties in terms of Sobolev spaces. We further derive conditions guaranteeing the Hölder continuity of their covariance kernels and we prove the existence of sample Hölder continuous modifications for Gaussian random fields. Furthermore, we measure the error of truncated approximations of the corresponding series' representations. Moreover our developments are supported by numerical experiments. The majority of our results are new for multivariate random fields indexed over other domains, too. We express some of them for the case of the sphere.
论球上多元各向同性随机场的特性
我们考虑了球 Bd 上的多变量各向同性随机场。我们首先研究了它们在索波列夫空间方面的正则性。我们进一步推导了保证其协方差核的赫尔德连续性的条件,并证明了高斯随机场的样本赫尔德连续修正的存在性。此外,我们还测量了相应序列表示的截断近似误差。此外,我们的发展还得到了数值实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Stochastic Processes
Theory of Stochastic Processes Mathematics-Applied Mathematics
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信