Analytic Representation of the Sequence of Functions on \(L^1\mathbb{R}\) Space

E. Iseni, S. Rexhepi, Bilall I. Shaini, I. Demiri
{"title":"Analytic Representation of the Sequence of Functions on \\(L^1\\mathbb{R}\\) Space","authors":"E. Iseni, S. Rexhepi, Bilall I. Shaini, I. Demiri","doi":"10.56557/ajomcor/2024/v31i38779","DOIUrl":null,"url":null,"abstract":"In this paper studies the convergence of the functional sequence, of functions belonging to \\(L^1\\mathbb{R}\\) space and their analytic representations. In the first theorem using Parseval’s theorem and a result that describes the inverse Fourier transform between the Heaviside function, we prove the analytic representation of the functional sequence, of the functions belonging to the \\(L^1\\mathbb{R}\\) space, and uniform convergence of the sequence of their analytic representation. Using Fourier transform and the Cauchy representation we show that the sequence of the analytic representation, converges uniformly to the functions belonging to the same space on the compact subset. In the last part, we applied Fubini’s theorem to the functional sequence \\(\\theta_n(t)\\) , and if we have a sequence of functions on \\(L^1\\mathbb{R}\\) and another function from the same space, then the sequence of convolutions converges also on \\(L^1\\mathbb{R}\\) space.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i38779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper studies the convergence of the functional sequence, of functions belonging to \(L^1\mathbb{R}\) space and their analytic representations. In the first theorem using Parseval’s theorem and a result that describes the inverse Fourier transform between the Heaviside function, we prove the analytic representation of the functional sequence, of the functions belonging to the \(L^1\mathbb{R}\) space, and uniform convergence of the sequence of their analytic representation. Using Fourier transform and the Cauchy representation we show that the sequence of the analytic representation, converges uniformly to the functions belonging to the same space on the compact subset. In the last part, we applied Fubini’s theorem to the functional sequence \(\theta_n(t)\) , and if we have a sequence of functions on \(L^1\mathbb{R}\) and another function from the same space, then the sequence of convolutions converges also on \(L^1\mathbb{R}\) space.
L^1/mathbb{R}空间上函数序列的解析表示
本文研究了函数序列的收敛性、属于 \(L^1\mathbb{R}\) 空间的函数及其解析表示。在第一个定理中,我们利用帕瑟瓦尔(Parseval)定理和描述海维塞德(Heaviside)函数之间的逆傅里叶变换的结果,证明了属于\(L^1\mathbb{R}\)空间的函数序列的解析表示,以及它们的解析表示序列的均匀收敛性。利用傅里叶变换和考奇表示,我们证明了解析表示的序列在紧凑子集上均匀收敛于属于同一空间的函数。在最后一部分,我们把富比尼定理应用于函数序列 \(\theta_n(t)\)如果我们在 \(L^1\mathbb{R}\)上有一个函数序列和另一个来自同一空间的函数,那么这个卷积序列也收敛于 \(L^1\mathbb{R}\)空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信