S. J. Ling, Z. Q. Yu, J. Shu, S. Q. Liu, J. H. Wang, J. D. Lu
{"title":"Effects of strain and ferromagnetic metal stripe on the electron transport properties in a graphene","authors":"S. J. Ling, Z. Q. Yu, J. Shu, S. Q. Liu, J. H. Wang, J. D. Lu","doi":"10.1142/s0217979225500808","DOIUrl":null,"url":null,"abstract":"Because the electron transport mechanism in graphene is heavily impacted by the strain and the ferromagnetic metal stripe as well as several other avenues, in this paper we investigate the effects of the strained barrier induced by the strain and the magnetic field generated by the ferromagnetic metal stripe on the valley polarization through numerical calculation. When the strength and the width of the strained barrier as well as the magnitude of the magnetic field are changed, the rapid variation of the valley polarization is observed. This study will be helpful for devising and manufacturing new-style valleytronic devices.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":" 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979225500808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Because the electron transport mechanism in graphene is heavily impacted by the strain and the ferromagnetic metal stripe as well as several other avenues, in this paper we investigate the effects of the strained barrier induced by the strain and the magnetic field generated by the ferromagnetic metal stripe on the valley polarization through numerical calculation. When the strength and the width of the strained barrier as well as the magnitude of the magnetic field are changed, the rapid variation of the valley polarization is observed. This study will be helpful for devising and manufacturing new-style valleytronic devices.