{"title":"Automatic Vocal Completion for Indonesian Language Based on Recurrent Neural Network","authors":"Agi Prasetiadi, Asti Dwi Sripamuji, Risa Riski Amalia, Julian Saputra, Imada Ramadhanti","doi":"10.25299/itjrd.2024.14171","DOIUrl":null,"url":null,"abstract":"Most Indonesian social media users under the age of 25 use various words, which are now often referred to as slang, including abbreviations in communicating. Not only causes, but this variation also poses challenges for the natural language processing of Indonesian. The previous researchers tried to improve the Recurrent Neural Network to correct errors at the character level with an accuracy of 83.76%. This study aims to normalize abbreviated words in Indonesian into complete words using a Recurrent Neural Network in the form of Bidirected Long Short-Term Memory and Gated Recurrent Unit. The dataset is built with several weight confgurations from 3-Gram to 6-Gram consisting of words without vowels and complete words with vowels. Our model is the frst model in the world that tries to fnd incomplete Indonesian words, which eventually become fully lettered sentences with an accuracy of 97.44%.","PeriodicalId":484232,"journal":{"name":"IT journal research and development","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT journal research and development","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.25299/itjrd.2024.14171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most Indonesian social media users under the age of 25 use various words, which are now often referred to as slang, including abbreviations in communicating. Not only causes, but this variation also poses challenges for the natural language processing of Indonesian. The previous researchers tried to improve the Recurrent Neural Network to correct errors at the character level with an accuracy of 83.76%. This study aims to normalize abbreviated words in Indonesian into complete words using a Recurrent Neural Network in the form of Bidirected Long Short-Term Memory and Gated Recurrent Unit. The dataset is built with several weight confgurations from 3-Gram to 6-Gram consisting of words without vowels and complete words with vowels. Our model is the frst model in the world that tries to fnd incomplete Indonesian words, which eventually become fully lettered sentences with an accuracy of 97.44%.