{"title":"An Automated Cropland Burned-Area Detection Algorithm Based on Landsat Time Series Coupled with Optimized Outliers and Thresholds","authors":"Sumei Zhang, Huijuan Li, Hongmei Zhao","doi":"10.3390/fire7070257","DOIUrl":null,"url":null,"abstract":"Given the increasingly severe global fires, the accurate detection of small and fragmented cropland fires has been a significant challenge. The use of medium-resolution satellite data can enhance detection accuracy; however, key challenges in this approach include accurately capturing the annual and interannual variations of burning characteristics and identifying outliers within the time series of these changes. In this study, we focus on a typical crop-straw burning area in Henan Province, located on the North China Plain. We develop an automated burned-area detection algorithm based on near-infrared and short-wave infrared data from Landsat 5 imagery. Our method integrates time-series outlier analysis using filtering and automatic iterative algorithms to determine the optimal threshold for detecting burned areas. Our results demonstrate the effectiveness of using preceding time-series and seasonal time-series analysis to differentiate fire-related changes from seasonal and non-seasonal influences on vegetation. Optimal threshold validation results reveal that the automatic threshold method is efficient and feasible with an overall accuracy exceeding 93%. The resulting burned-area map achieves a total accuracy of 93.25%, far surpassing the 76.5% detection accuracy of the MCD64A1 fire product, thereby highlighting the efficacy of our algorithm. In conclusion, our algorithm is suitable for detecting burned areas in large-scale farmland settings and provides valuable information for the development of future detection algorithms.","PeriodicalId":12279,"journal":{"name":"Fire","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7070257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given the increasingly severe global fires, the accurate detection of small and fragmented cropland fires has been a significant challenge. The use of medium-resolution satellite data can enhance detection accuracy; however, key challenges in this approach include accurately capturing the annual and interannual variations of burning characteristics and identifying outliers within the time series of these changes. In this study, we focus on a typical crop-straw burning area in Henan Province, located on the North China Plain. We develop an automated burned-area detection algorithm based on near-infrared and short-wave infrared data from Landsat 5 imagery. Our method integrates time-series outlier analysis using filtering and automatic iterative algorithms to determine the optimal threshold for detecting burned areas. Our results demonstrate the effectiveness of using preceding time-series and seasonal time-series analysis to differentiate fire-related changes from seasonal and non-seasonal influences on vegetation. Optimal threshold validation results reveal that the automatic threshold method is efficient and feasible with an overall accuracy exceeding 93%. The resulting burned-area map achieves a total accuracy of 93.25%, far surpassing the 76.5% detection accuracy of the MCD64A1 fire product, thereby highlighting the efficacy of our algorithm. In conclusion, our algorithm is suitable for detecting burned areas in large-scale farmland settings and provides valuable information for the development of future detection algorithms.