Construction Parameters Optimization of CO2 Composite Fracturing for Horizontal Shale Wells

Juncheng Pan, Qi Zhang, Lang Ding, Dongmei Huang, Le Wu, Mingjing Lu
{"title":"Construction Parameters Optimization of CO2 Composite Fracturing for Horizontal Shale Wells","authors":"Juncheng Pan, Qi Zhang, Lang Ding, Dongmei Huang, Le Wu, Mingjing Lu","doi":"10.1115/1.4066016","DOIUrl":null,"url":null,"abstract":"\n To ensure the economic feasibility of shale oil and gas exploitation, large-scale hydraulic fracturing is essential for increasing recovery volumes by creating more efficient conductivity channels. However, China's continental shale reservoirs present complex geological conditions, making optimization through traditional hydraulic fracturing challenging. Thus, substituting CO2 for water in fracturing fluids to enhance shale reservoirs has garnered significant interest. An orthogonal experimental design was implemented to identify the optimal parameters for CO2 composite fracturing. Analysis of single-factor experiments led to the selection of four key variables: slickwater volume, slickwater displacement, preflush liquid CO2 volume, and proppant addition volume, resulting in 16 experimental configurations. Using numerical simulation of tight oil shale reservoirs, the effective stimulated reservoir volume for each parameter combination was calculated. Variance analysis revealed that increased slickwater volume significantly enhances fracture initiation and propagation. While variations in slickwater displacement and preflush liquid CO2 volume influence fracture network morphology and complexity, they have a lesser effect on the stimulated volume compared to slickwater volume. Proppant quantity primarily affects fracture conductivity with minimal impact on stimulated volume. This research underpins the optimization of Constructional parameters for CO2 composite fracturing.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":" July","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4066016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the economic feasibility of shale oil and gas exploitation, large-scale hydraulic fracturing is essential for increasing recovery volumes by creating more efficient conductivity channels. However, China's continental shale reservoirs present complex geological conditions, making optimization through traditional hydraulic fracturing challenging. Thus, substituting CO2 for water in fracturing fluids to enhance shale reservoirs has garnered significant interest. An orthogonal experimental design was implemented to identify the optimal parameters for CO2 composite fracturing. Analysis of single-factor experiments led to the selection of four key variables: slickwater volume, slickwater displacement, preflush liquid CO2 volume, and proppant addition volume, resulting in 16 experimental configurations. Using numerical simulation of tight oil shale reservoirs, the effective stimulated reservoir volume for each parameter combination was calculated. Variance analysis revealed that increased slickwater volume significantly enhances fracture initiation and propagation. While variations in slickwater displacement and preflush liquid CO2 volume influence fracture network morphology and complexity, they have a lesser effect on the stimulated volume compared to slickwater volume. Proppant quantity primarily affects fracture conductivity with minimal impact on stimulated volume. This research underpins the optimization of Constructional parameters for CO2 composite fracturing.
水平页岩井二氧化碳复合压裂施工参数优化
为确保页岩油气开采的经济可行性,大规模水力压裂是通过创造更有效的导流通道来提高采收率的关键。然而,中国大陆页岩油藏地质条件复杂,传统的水力压裂技术难以实现优化。因此,用二氧化碳替代压裂液中的水以提高页岩储层的开采效率受到了广泛关注。为确定二氧化碳复合压裂的最佳参数,采用了正交实验设计。通过对单因素实验的分析,选择了四个关键变量:滑流水体积、滑流水排量、预冲液态二氧化碳体积和支撑剂添加量,从而得出了 16 种实验配置。通过对致密油页岩储层进行数值模拟,计算出了每种参数组合的有效激发储层体积。方差分析显示,增加浮油量可显著提高裂缝的启动和扩展。虽然滑水量和预冲洗液态二氧化碳量的变化会影响裂缝网络的形态和复杂性,但与滑水量相比,它们对激发体积的影响较小。支撑剂数量主要影响裂缝的传导性,对激发体积的影响很小。这项研究为二氧化碳复合压裂施工参数的优化奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信