Yousuf Soliman, Marcel Padilla, Oliver Gross, Felix Knöppel, U. Pinkall, Peter Schröder
{"title":"Going with the Flow","authors":"Yousuf Soliman, Marcel Padilla, Oliver Gross, Felix Knöppel, U. Pinkall, Peter Schröder","doi":"10.1145/3658164","DOIUrl":null,"url":null,"abstract":"\n Given a sequence of poses of a body we study the motion resulting when the body is immersed in a (possibly) moving, incompressible medium. With the poses given, say, by an animator, the governing second-order ordinary differential equations are those of a rigid body with time-dependent inertia acted upon by various forces. Some of these forces, like lift and drag, depend on the motion of the body in the surrounding medium. Additionally, the inertia must encode the effect of the medium through its\n added mass.\n We derive the corresponding dynamics equations which generalize the standard rigid body dynamics equations. All forces are based on local computations using only physical parameters such as mass density. Notably, we approximate the effect of the medium on the body through local computations avoiding any global simulation of the medium. Consequently, the system of equations we must integrate in time is only 6 dimensional (rotation and translation). Our proposed algorithm displays linear complexity and captures intricate natural phenomena that depend on body-fluid interactions.\n","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658164","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Given a sequence of poses of a body we study the motion resulting when the body is immersed in a (possibly) moving, incompressible medium. With the poses given, say, by an animator, the governing second-order ordinary differential equations are those of a rigid body with time-dependent inertia acted upon by various forces. Some of these forces, like lift and drag, depend on the motion of the body in the surrounding medium. Additionally, the inertia must encode the effect of the medium through its
added mass.
We derive the corresponding dynamics equations which generalize the standard rigid body dynamics equations. All forces are based on local computations using only physical parameters such as mass density. Notably, we approximate the effect of the medium on the body through local computations avoiding any global simulation of the medium. Consequently, the system of equations we must integrate in time is only 6 dimensional (rotation and translation). Our proposed algorithm displays linear complexity and captures intricate natural phenomena that depend on body-fluid interactions.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.