Solar Irradiance Prediction for Zaria Town Using Different Machine Learning Models

I. Abdulwahab, Sulaiman Haruna Sulaiman, Umar Musa, Ibrahim Abdullahi Shehu, Abdullahi Kakumi Musa, Ismaila Mahmud, Mohammed Musa, Abdullahi Abubakar, Abdulrahman Olaniyan
{"title":"Solar Irradiance Prediction for Zaria Town Using Different Machine Learning Models","authors":"I. Abdulwahab, Sulaiman Haruna Sulaiman, Umar Musa, Ibrahim Abdullahi Shehu, Abdullahi Kakumi Musa, Ismaila Mahmud, Mohammed Musa, Abdullahi Abubakar, Abdulrahman Olaniyan","doi":"10.51846/vol7iss2pp66-71","DOIUrl":null,"url":null,"abstract":"The research is set to predict solar irradiation using various machine learning algorithms. This is done in order to construct and develop a high-efficiency prediction model that uses actual meteorological data to predict daily solar irradiance for the town of Zaria, Nigeria. To assist utilities working in various solar energy generation and monitoring stations in making effective solar energy generation management system decisions. Four machine learning models (artificial neural network (ANN), decision tree (DT), random forest (RF), and gradient boost tree (GBT).) were used to predict and compare actual and anticipated solar radiation values. The results reveal that meteorological characteristics (min-humidity, max-temperature, day, month, and wind direction) are critical in machine learning model training. The solar radiation prediction skills of multi-layer perceptron and decision tree models were low. In the prediction of daily solar irradiation, the ensemble learning models of random forest and gradient boost tree outperformed the other models. The random forest model is shown to be the most accurate in predicting solar irradiation.","PeriodicalId":181490,"journal":{"name":"Pakistan Journal of Engineering and Technology","volume":"110 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51846/vol7iss2pp66-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research is set to predict solar irradiation using various machine learning algorithms. This is done in order to construct and develop a high-efficiency prediction model that uses actual meteorological data to predict daily solar irradiance for the town of Zaria, Nigeria. To assist utilities working in various solar energy generation and monitoring stations in making effective solar energy generation management system decisions. Four machine learning models (artificial neural network (ANN), decision tree (DT), random forest (RF), and gradient boost tree (GBT).) were used to predict and compare actual and anticipated solar radiation values. The results reveal that meteorological characteristics (min-humidity, max-temperature, day, month, and wind direction) are critical in machine learning model training. The solar radiation prediction skills of multi-layer perceptron and decision tree models were low. In the prediction of daily solar irradiation, the ensemble learning models of random forest and gradient boost tree outperformed the other models. The random forest model is shown to be the most accurate in predicting solar irradiation.
使用不同的机器学习模型预测扎里亚镇的太阳辐照度
这项研究旨在利用各种机器学习算法预测太阳辐照度。这样做是为了构建和开发一个高效预测模型,利用实际气象数据预测尼日利亚扎里亚镇的日太阳辐照度。帮助在各种太阳能发电和监测站工作的公用事业公司做出有效的太阳能发电管理系统决策。四种机器学习模型(人工神经网络 (ANN)、决策树 (DT)、随机森林 (RF) 和梯度提升树 (GBT))被用来预测和比较实际和预期的太阳辐射量值。结果表明,气象特征(最小湿度、最大温度、日、月和风向)对机器学习模型的训练至关重要。多层感知器模型和决策树模型的太阳辐射预测能力较低。在日太阳辐照度预测方面,随机森林和梯度提升树的集合学习模型优于其他模型。随机森林模型在预测太阳辐照度方面最为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信