Systematic Multivariate Analysis for Optimizing Active and Selective AuPd-Based-Nanocatalyts towards Benzyl Alcohol Oxidation

Miguel R. I. Guerra, M. L. Gothe, Adolfo L. Figueredo, Marcos V. Petri, N. Maluf, Anderson G. M. da Silva, P. Vidinha, M. A. Garcia
{"title":"Systematic Multivariate Analysis for Optimizing Active and Selective AuPd-Based-Nanocatalyts towards Benzyl Alcohol Oxidation","authors":"Miguel R. I. Guerra, M. L. Gothe, Adolfo L. Figueredo, Marcos V. Petri, N. Maluf, Anderson G. M. da Silva, P. Vidinha, M. A. Garcia","doi":"10.37256/ujgc.2220244619","DOIUrl":null,"url":null,"abstract":"Supported bimetallic gold-palladium (AuPd) nanomaterials have been extensively studied as highly active and selective nanocatalysts for oxidation reactions. For long-term viability, optimizing synthesis and reaction parameters is essential for utilizing noble-based materials once they are expensive to produce on a large scale. For that reason, using a performance-focused strategy like a multivariate experimental design is an optimal solution for simultaneously investigating the effects of different parameters and implementing such materials in business activities. Therefore, herein, we report a systematic multivariate optimization of model AuPd/SiO2 nanocatalysts for selective benzyl alcohol oxidation in solvent-free sustainable conditions, which allows for the evaluation of the impact of the material synthesis and reaction conditions on the process and optimization of reaction and calcination temperatures. Our multivariate analysis shows that the calcination temperature has considerably impacted the structural properties of gold nanoparticles; still, these changes did not produce a pronounced effect on the material’s catalytic properties. On the other hand, the physical variables of reaction time and temperature had a more significant influence on both conversion and selectivity. An 18% conversion of benzyl alcohol with a benzaldehyde selectivity of 93% was achieved under a 562 ◦C catalyst calcination temperature, 100 ◦C reaction temperature, and 4 h of reaction time.","PeriodicalId":150757,"journal":{"name":"Universal Journal of Green Chemistry","volume":"113 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Green Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/ujgc.2220244619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supported bimetallic gold-palladium (AuPd) nanomaterials have been extensively studied as highly active and selective nanocatalysts for oxidation reactions. For long-term viability, optimizing synthesis and reaction parameters is essential for utilizing noble-based materials once they are expensive to produce on a large scale. For that reason, using a performance-focused strategy like a multivariate experimental design is an optimal solution for simultaneously investigating the effects of different parameters and implementing such materials in business activities. Therefore, herein, we report a systematic multivariate optimization of model AuPd/SiO2 nanocatalysts for selective benzyl alcohol oxidation in solvent-free sustainable conditions, which allows for the evaluation of the impact of the material synthesis and reaction conditions on the process and optimization of reaction and calcination temperatures. Our multivariate analysis shows that the calcination temperature has considerably impacted the structural properties of gold nanoparticles; still, these changes did not produce a pronounced effect on the material’s catalytic properties. On the other hand, the physical variables of reaction time and temperature had a more significant influence on both conversion and selectivity. An 18% conversion of benzyl alcohol with a benzaldehyde selectivity of 93% was achieved under a 562 ◦C catalyst calcination temperature, 100 ◦C reaction temperature, and 4 h of reaction time.
通过系统多元分析优化金钯基纳米触媒对苯甲醇氧化的活性和选择性
作为用于氧化反应的高活性、高选择性纳米催化剂,人们对支撑双金属金钯(AuPd)纳米材料进行了广泛的研究。由于贵金属材料的大规模生产成本高昂,因此要想获得长期的可行性,优化合成和反应参数对于利用贵金属材料至关重要。因此,使用多变量实验设计等以性能为重点的策略是同时研究不同参数的影响和在商业活动中使用此类材料的最佳解决方案。因此,在本文中,我们报告了对模型 AuPd/SiO2 纳米催化剂在无溶剂可持续条件下进行选择性苯甲醇氧化的系统多元优化,从而评估了材料合成和反应条件对工艺的影响,并优化了反应和煅烧温度。我们的多变量分析表明,煅烧温度对金纳米粒子的结构特性有很大影响;但这些变化并未对材料的催化特性产生明显影响。另一方面,反应时间和温度这两个物理变量对转化率和选择性的影响更为显著。在催化剂煅烧温度为 562 ◦C、反应温度为 100 ◦C、反应时间为 4 小时的条件下,苯甲醇的转化率为 18%,苯甲醛的选择性为 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信