Effect of cellulosic micro- and nano- sized fillers on strength and microstructure of rubber composites

J. O. Oboh, Kingsley Kema Ajekwene, A. Okele, S. I. Ichetaonye, I. B. Mohammed
{"title":"Effect of cellulosic micro- and nano- sized fillers on strength and microstructure of rubber composites","authors":"J. O. Oboh, Kingsley Kema Ajekwene, A. Okele, S. I. Ichetaonye, I. B. Mohammed","doi":"10.4314/njt.v43i2.12","DOIUrl":null,"url":null,"abstract":"The tensile strength of polymer composites is basically influenced by the geometry (size and shape) of the reinforcing material as well as interfacial interaction and bonding between the polymer matrix and reinforcing phase. This work compares the effect of microfillers to nanofillers of coconut husk, bamboo and cotton linter on the tensile strength and microstructure of vulcanized rubber matrix. The various composites were formulated and prepared using filler loading of 5, 10, 15, 20, 25 and 30 parts per hundred of rubber (pphr) in rubber matrix for both micro- and nano- fillers of the various biomass through friction shearing and compression moulding processes. Results revealed that the tensile strength of the nanocomposites predominantly increased from 1.85 MPa for neat sample to maximum values of 3.83, 3.16 and 3.85 MPa respectively for composites with 25pphr of coconut husk cellulosic nanoparticles (NR-CHNC25), 30pphr of bamboo cellulosic nanoparticles (NR-BNC30) and with 25pphr of cotton linter cellulosic nanoparticles (NR-CLNC25) conversely, the tensile strength of their counter microcomposites changes from 1.85MPa for neat sample to maximum values of 1.68, 1.67 and 2.46 MPa for composites with 10pphr of coconut cellulosic microparticles (NR-CHMC10) 15pphr of bamboo cellulosic microparticles (NR-BMC15) and 30pphr of cotton linter cellulosic microparticles (NR-CLMC30) respectively within the loading range employed in this experiment. Scanning Electron Microscope (SEM) images of microcomposites showed cases of microfiller debonding and pull-out from the rubber matrix. Hence the improved tensile strength of nanocomposites over their counterpart microcomposites was attributed to the larger surface area provided by nanofillers for interfacial bonding and effective stress transfer.","PeriodicalId":33360,"journal":{"name":"Nigerian Journal of Technology","volume":"124 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njt.v43i2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tensile strength of polymer composites is basically influenced by the geometry (size and shape) of the reinforcing material as well as interfacial interaction and bonding between the polymer matrix and reinforcing phase. This work compares the effect of microfillers to nanofillers of coconut husk, bamboo and cotton linter on the tensile strength and microstructure of vulcanized rubber matrix. The various composites were formulated and prepared using filler loading of 5, 10, 15, 20, 25 and 30 parts per hundred of rubber (pphr) in rubber matrix for both micro- and nano- fillers of the various biomass through friction shearing and compression moulding processes. Results revealed that the tensile strength of the nanocomposites predominantly increased from 1.85 MPa for neat sample to maximum values of 3.83, 3.16 and 3.85 MPa respectively for composites with 25pphr of coconut husk cellulosic nanoparticles (NR-CHNC25), 30pphr of bamboo cellulosic nanoparticles (NR-BNC30) and with 25pphr of cotton linter cellulosic nanoparticles (NR-CLNC25) conversely, the tensile strength of their counter microcomposites changes from 1.85MPa for neat sample to maximum values of 1.68, 1.67 and 2.46 MPa for composites with 10pphr of coconut cellulosic microparticles (NR-CHMC10) 15pphr of bamboo cellulosic microparticles (NR-BMC15) and 30pphr of cotton linter cellulosic microparticles (NR-CLMC30) respectively within the loading range employed in this experiment. Scanning Electron Microscope (SEM) images of microcomposites showed cases of microfiller debonding and pull-out from the rubber matrix. Hence the improved tensile strength of nanocomposites over their counterpart microcomposites was attributed to the larger surface area provided by nanofillers for interfacial bonding and effective stress transfer.
纤维素微米级和纳米级填料对橡胶复合材料强度和微观结构的影响
聚合物复合材料的拉伸强度主要受增强材料的几何形状(尺寸和形状)以及聚合物基体和增强相之间的界面相互作用和粘合作用的影响。本研究比较了微填料和纳米填料(椰壳、竹子和棉花)对硫化橡胶基体的拉伸强度和微观结构的影响。通过摩擦剪切和压缩模塑工艺,在橡胶基体中分别添加 5、10、15、20、25 和 30 份橡胶(pphr)的微填料和纳米填料,配制并制备了各种复合材料。结果表明,纳米复合材料的拉伸强度主要从纯样品的 1.85 兆帕增加到最大值 3.83、3.16 和 3.85 兆帕。85 MPa。相反,含有 25pphr 椰壳纤维素纳米粒子 (NR-CHNC25)、30pphr 竹纤维素纳米粒子 (NR-BNC30) 和 25pphr 棉绒纤维素纳米粒子 (NR-CLNC25) 的复合材料的抗拉强度则从纯样品的 1.85MPa,到添加 10pphr 椰子纤维素微颗粒(NR-CHMC10)、15pphr 竹纤维素微颗粒(NR-BMC15)和 30pphr 棉花纤维素微颗粒(NR-CLMC30)的复合材料的最大值分别为 1.68、1.67 和 2.46MPa。微复合材料的扫描电子显微镜(SEM)图像显示了微填料从橡胶基体中脱落和拔出的情况。因此,纳米复合材料的拉伸强度比同类微复合材料有所提高,这归因于纳米填料为界面粘合和有效应力传递提供了更大的表面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
126
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信