On the Relative Φ-Growth of Hadamard Compositions of Dirichlet Series

Axioms Pub Date : 2024-07-19 DOI:10.3390/axioms13070487
M. Sheremeta, O. Mulyava
{"title":"On the Relative Φ-Growth of Hadamard Compositions of Dirichlet Series","authors":"M. Sheremeta, O. Mulyava","doi":"10.3390/axioms13070487","DOIUrl":null,"url":null,"abstract":"For the Dirichlet series F(s)=∑n=1∞fnexp{sλn}, which is the Hadamard composition of the genus m of similar Dirichlet series Fj(s) with the same exponents, the growth with respect to the function G(s) given as the Dirichlet series is studied in terms of the Φ-type (the upper limit of MG−1(MF(σ))/Φ(σ) as σ↑A) and convergence Φ-class defined by the condition ∫σ0AΦ′(σ)MG−1(MF(σ))Φ2(σ)dσ<+∞, where MF(σ) is the maximum modulus of the function F at an imaginary line and A is the abscissa of the absolute convergence.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"105 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the Dirichlet series F(s)=∑n=1∞fnexp{sλn}, which is the Hadamard composition of the genus m of similar Dirichlet series Fj(s) with the same exponents, the growth with respect to the function G(s) given as the Dirichlet series is studied in terms of the Φ-type (the upper limit of MG−1(MF(σ))/Φ(σ) as σ↑A) and convergence Φ-class defined by the condition ∫σ0AΦ′(σ)MG−1(MF(σ))Φ2(σ)dσ<+∞, where MF(σ) is the maximum modulus of the function F at an imaginary line and A is the abscissa of the absolute convergence.
论德里赫特数列哈达玛德组合的相对 Φ 增长
德里赫利数列 F(s)=∑n=1∞fnexp{sλn} 是具有相同指数的类似德里赫利数列 Fj(s) 的属 m 的哈达玛组成、关于作为 Dirichlet 级数给出的函数 G(s)的增长,从 Φ 型(MG-1(MF(σ))/Φ(σ)的上限为 σ↑A)和收敛 Φ 级进行研究,收敛 Φ 级由 ∫σ0AΦ′(σ)MG-1(MF(σ))Φ2(σ)dσ<+∞ 条件定义、其中,MF(σ) 是函数 F 在虚线处的最大模量,A 是绝对收敛的横座标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信