Neutrosophic Regression Modeling with Dummy Variables: Applications and Simulations

IF 0.7 Q2 MATHEMATICS
Muhammad Aslam, Osama H. Arif
{"title":"Neutrosophic Regression Modeling with Dummy Variables: Applications and Simulations","authors":"Muhammad Aslam, Osama H. Arif","doi":"10.28924/2291-8639-22-2024-114","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a regression model using dummy variables within the framework of neutrosophic statistics. This model is designed for regression analysis under conditions of uncertainty, extending the classical regression model with dummy variables. We also present regression and analysis of variance under neutrosophic statistics. The application of our model is demonstrated through simulation and comparative studies, showing that the results differ from those obtained using classical regression. Our findings indicate that the degree of uncertainty significantly impacts the predicted and residual values.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a regression model using dummy variables within the framework of neutrosophic statistics. This model is designed for regression analysis under conditions of uncertainty, extending the classical regression model with dummy variables. We also present regression and analysis of variance under neutrosophic statistics. The application of our model is demonstrated through simulation and comparative studies, showing that the results differ from those obtained using classical regression. Our findings indicate that the degree of uncertainty significantly impacts the predicted and residual values.
带虚拟变量的中性回归建模:应用与模拟
在本文中,我们介绍了一种在中性统计框架内使用虚拟变量的回归模型。该模型是为不确定条件下的回归分析而设计的,扩展了使用虚拟变量的经典回归模型。我们还介绍了中性统计下的回归和方差分析。我们通过模拟和比较研究展示了我们模型的应用,结果表明与使用经典回归得出的结果不同。我们的研究结果表明,不确定性程度会对预测值和残差值产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信