Salih Durdu, Atasoy, Sitki Aktaş, E. Yalçın, K. Çavuşoğlu
{"title":"Surface characterization and antibacterial efficiency of TiO2 nanotubes on Ti15Mo alloy","authors":"Salih Durdu, Atasoy, Sitki Aktaş, E. Yalçın, K. Çavuşoğlu","doi":"10.1680/jsuin.24.00042","DOIUrl":null,"url":null,"abstract":"The aim of this work is to investigate wettability and antibacterial properties of the well-ordered TiO2 nanotube (TNTs) surfaces on new generation Ti15Mo alloys for dental and orthopedic implant applications. Thus, the well-ordered TNTs and flat oxide surfaces were fabricated at various potentials such as 20 V, 40 V and 60 V on Ti15Mo alloy by anodic oxidation (AO) technique. Uniform elemental distributions were obtained across all surfaces. In particular, the nanotube surfaces produced at 60 V showed hydrophilic behavior whereas the flat and nanotube surfaces produced at 20 V and 40 V were hydrophobic, respectively. The in vitro antibacterial activity of all surfaces against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria were investigated in detail. Compared to bare Ti15Mo alloys, the flat and TNTs surfaces indicated antibacterial activity. Furthermore, the antibacterial efficiency of TNTs produced on Ti15Mo alloy improved with increasing AO potential values.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00042","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this work is to investigate wettability and antibacterial properties of the well-ordered TiO2 nanotube (TNTs) surfaces on new generation Ti15Mo alloys for dental and orthopedic implant applications. Thus, the well-ordered TNTs and flat oxide surfaces were fabricated at various potentials such as 20 V, 40 V and 60 V on Ti15Mo alloy by anodic oxidation (AO) technique. Uniform elemental distributions were obtained across all surfaces. In particular, the nanotube surfaces produced at 60 V showed hydrophilic behavior whereas the flat and nanotube surfaces produced at 20 V and 40 V were hydrophobic, respectively. The in vitro antibacterial activity of all surfaces against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria were investigated in detail. Compared to bare Ti15Mo alloys, the flat and TNTs surfaces indicated antibacterial activity. Furthermore, the antibacterial efficiency of TNTs produced on Ti15Mo alloy improved with increasing AO potential values.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.