Melting Behavior Effect of MXene Nanoenhanced Phase Change Material on Energy and Exergyanalysis of Double and Triplex Tube Latent Heat Thermal Energy Storage

0 ENGINEERING, MECHANICAL
Utkarsh Srivastava, Rashmi Sahoo
{"title":"Melting Behavior Effect of MXene Nanoenhanced Phase Change Material on Energy and Exergyanalysis of Double and Triplex Tube Latent Heat Thermal Energy Storage","authors":"Utkarsh Srivastava, Rashmi Sahoo","doi":"10.1115/1.4065997","DOIUrl":null,"url":null,"abstract":"\n The impacts of melting behaviour on the thermal performance of TT-TES and DT-TES systems employing cetyl alcohol and 3% v/v. MXene nanoenhanced PCM are compared and numerically evaluated in this work. For both the DT-TES and TT-TES systems, the following were investigated in connection to melting time: system efficiency, discharged energy, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, melting fraction, and melting temperature contours. In addition, the effect of Stefan, Rayleigh, and Nusselt numbers on Fourier numbers are compared for the DT-TES and TT-TES systems with MXene NEPCM.\n MXene-based nano-enhanced PCM melting in TT-TES displayed 6.53% more Stefan number than cetyl alcohol. Pure melting of MXene-based nano-enhanced PCM in a TT-TES had 4.16% higher storage exergy than cetyl alcohol. The entropy generation number of pure melting of MXene-based nano-enhanced PCM in TT-TES is 7.93% lower than that of cetyl alcohol. Pure cetyl alcohol has 76.99% optimal system efficiency at 5400 seconds melting time and MXene NEPCM 77.04% at 4800 seconds in DT-TES. The charging temperature for pure cetyl alcohol PCM in TT-TES is 0.7% lower than in DT-TES. Furthermore, pure melting of MXene-based nano-enhanced PCM in a TT-TES has 1.95% lower storage energy than cetyl alcohol. For a given volume of MXene-based nano-enhanced cetyl alcohol PCM, melting occurs more rapidly in a TT-TES system.","PeriodicalId":510895,"journal":{"name":"ASME journal of heat and mass transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME journal of heat and mass transfer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1115/1.4065997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impacts of melting behaviour on the thermal performance of TT-TES and DT-TES systems employing cetyl alcohol and 3% v/v. MXene nanoenhanced PCM are compared and numerically evaluated in this work. For both the DT-TES and TT-TES systems, the following were investigated in connection to melting time: system efficiency, discharged energy, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, melting fraction, and melting temperature contours. In addition, the effect of Stefan, Rayleigh, and Nusselt numbers on Fourier numbers are compared for the DT-TES and TT-TES systems with MXene NEPCM. MXene-based nano-enhanced PCM melting in TT-TES displayed 6.53% more Stefan number than cetyl alcohol. Pure melting of MXene-based nano-enhanced PCM in a TT-TES had 4.16% higher storage exergy than cetyl alcohol. The entropy generation number of pure melting of MXene-based nano-enhanced PCM in TT-TES is 7.93% lower than that of cetyl alcohol. Pure cetyl alcohol has 76.99% optimal system efficiency at 5400 seconds melting time and MXene NEPCM 77.04% at 4800 seconds in DT-TES. The charging temperature for pure cetyl alcohol PCM in TT-TES is 0.7% lower than in DT-TES. Furthermore, pure melting of MXene-based nano-enhanced PCM in a TT-TES has 1.95% lower storage energy than cetyl alcohol. For a given volume of MXene-based nano-enhanced cetyl alcohol PCM, melting occurs more rapidly in a TT-TES system.
MXene 纳米增强相变材料的熔融行为对双管和三联管潜热储能器能量和放能分析的影响
熔化行为对采用十六醇和 3% v/v. MXene 纳米增强 PCM 的 TT-TES 和 DT-TES 系统热性能的影响。MXene 纳米增强型 PCM 的热性能的影响进行了比较和数值评估。对于 DT-TES 和 TT-TES 系统,研究了与熔化时间相关的以下内容:系统效率、排出的能量、传热速率、放能破坏、熵生成数、放能效率、熔化率和熔化温度等值线。此外,还比较了使用 MXene NEPCM 的 DT-TES 和 TT-TES 系统的斯蒂芬数、瑞利数和努塞尔数对傅里叶数的影响。在 TT-TES 中熔化的 MXene 纳米增强 PCM 的斯特凡数比鲸蜡醇高出 6.53%。在 TT-TES 中,MXene 纳米增强型 PCM 的纯熔化比十六醇高出 4.16% 的储能。在 TT-TES 中纯熔化的 MXene 纳米增强型 PCM 的熵产生数比十六醇低 7.93%。在 DT-TES 中,纯十六醇在 5400 秒熔化时间内的最佳系统效率为 76.99%,而 MXene NEPCM 在 4800 秒熔化时间内的最佳系统效率为 77.04%。纯十六醇 PCM 在 TT-TES 中的加料温度比 DT-TES 低 0.7%。此外,在 TT-TES 中纯熔化的 MXene 纳米增强 PCM 的存储能比鲸蜡醇低 1.95%。对于一定体积的 MXene 纳米增强鲸蜡醇 PCM,在 TT-TES 系统中熔化的速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信