Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA

Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, E. Deeb, S. O’Neel, Daniel McGrath, R. Webb, R. Bonnell, M. Raleigh, C. Hiemstra, Kelly Elder
{"title":"Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA","authors":"Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, E. Deeb, S. O’Neel, Daniel McGrath, R. Webb, R. Bonnell, M. Raleigh, C. Hiemstra, Kelly Elder","doi":"10.5194/tc-18-3253-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Estimating snow mass in the mountains remains a major challenge for remote-sensing methods. Airborne lidar can retrieve snow depth, and some promising results have recently been obtained from spaceborne platforms, yet density estimates are required to convert snow depth to snow water equivalent (SWE). However, the retrieval of snow bulk density remains unsolved, and limited data are available to evaluate model estimates of density in mountainous terrain. Toward the goal of landscape-scale retrievals of snow density, we estimated bulk density and length-scale variability by combining ground-penetrating radar (GPR) two-way travel-time observations and airborne-lidar snow depths collected during the mid-winter NASA SnowEx 2020 campaign at Grand Mesa, Colorado, USA. Key advancements of our approach include an automated layer-picking method that leverages the GPR reflection coherence and the distributed lidar–GPR-retrieved bulk density with machine learning. The root-mean-square error between the distributed estimates and in situ observations is 11 cm for depth, 27 kg m−3 for density, and 46 mm for SWE. The median relative uncertainty in distributed SWE is 13 %. Interactions between wind, terrain, and vegetation display corroborated controls on bulk density that show model and observation agreement. Knowledge of the spatial patterns and predictors of density is critical for the accurate assessment of SWE and essential snow research applications. The spatially continuous snow density and SWE estimated over approximately 16 km2 may serve as necessary calibration and validation for stepping prospective remote-sensing techniques toward broad-scale SWE retrieval.\n","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"30 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cryosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/tc-18-3253-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Estimating snow mass in the mountains remains a major challenge for remote-sensing methods. Airborne lidar can retrieve snow depth, and some promising results have recently been obtained from spaceborne platforms, yet density estimates are required to convert snow depth to snow water equivalent (SWE). However, the retrieval of snow bulk density remains unsolved, and limited data are available to evaluate model estimates of density in mountainous terrain. Toward the goal of landscape-scale retrievals of snow density, we estimated bulk density and length-scale variability by combining ground-penetrating radar (GPR) two-way travel-time observations and airborne-lidar snow depths collected during the mid-winter NASA SnowEx 2020 campaign at Grand Mesa, Colorado, USA. Key advancements of our approach include an automated layer-picking method that leverages the GPR reflection coherence and the distributed lidar–GPR-retrieved bulk density with machine learning. The root-mean-square error between the distributed estimates and in situ observations is 11 cm for depth, 27 kg m−3 for density, and 46 mm for SWE. The median relative uncertainty in distributed SWE is 13 %. Interactions between wind, terrain, and vegetation display corroborated controls on bulk density that show model and observation agreement. Knowledge of the spatial patterns and predictors of density is critical for the accurate assessment of SWE and essential snow research applications. The spatially continuous snow density and SWE estimated over approximately 16 km2 may serve as necessary calibration and validation for stepping prospective remote-sensing techniques toward broad-scale SWE retrieval.
从美国科罗拉多州大梅萨的地基和机载传感器集成中获得的空间分布雪深、体积密度和雪水当量
摘要估算山区的雪量仍然是遥感方法面临的一大挑战。机载激光雷达可以探测雪深,最近机载平台也取得了一些有希望的结果,但要将雪深转换成雪水当量(SWE),还需要密度估算。然而,雪的体积密度检索问题仍未解决,用于评估山区地形密度估算模型的数据也很有限。为了实现景观尺度雪密度检索的目标,我们结合了在美国科罗拉多州大梅沙进行的美国宇航局 SnowEx 2020 年仲冬活动期间收集的地面穿透雷达(GPR)双向行进时间观测数据和机载激光雷达雪深数据,对雪的体积密度和长度尺度变化进行了估算。我们的方法的主要进步包括利用 GPR 反射相干性和分布式激光雷达-GPR 通过机器学习获取的体积密度的自动分层方法。分布式估计值与原位观测值之间的均方根误差为:深度 11 厘米、密度 27 千克/立方米、SWE 46 毫米。分布式 SWE 的相对不确定性中值为 13%。风、地形和植被之间的相互作用对容积密度的控制得到了证实,表明模型和观测结果一致。了解密度的空间模式和预测因素对于准确评估 SWE 和重要的雪研究应用至关重要。在约 16 平方公里的范围内估算出的空间连续雪密度和 SWE 可作为必要的校准和验证,帮助未来的遥感技术走向大范围 SWE 检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信