Fault diagnosis method for rotating machinery based on SEDenseNet and Gramian Angular Field

Ruoyang Bai, Hongwei Wang, Wenlei Sun, Yuxin Shi
{"title":"Fault diagnosis method for rotating machinery based on SEDenseNet and Gramian Angular Field","authors":"Ruoyang Bai, Hongwei Wang, Wenlei Sun, Yuxin Shi","doi":"10.17531/ein/191445","DOIUrl":null,"url":null,"abstract":"The fault diagnosis in rotating machinery is crucial for ensuring the safe and dependable operation of intricate mechanical systems. Addressing the limitations inherent in traditional deep learning approaches concerning extended time sequence encoding and subpar generalization capability is paramount. The study utilizes the Gramian Angular Field (GAF) and Squeeze and Excitation (SE) attention mechanisms to alleviate these constraints. GAF enhances feature extraction by emphasizing the angular relationships among adjacent signal points to uncover latent fault characteristics. Simultaneously, through the integration of SE with DenseNet architecture, the network facilitates global information exchange and improves multi-scale fusion, thereby enhancing the precise identification of fault type and location within the signal. Experiments conducted on two datasets achieved accuracies of 100% and 99.85%, respectively, outperforming other methods and models, thereby validating the effectiveness of this study.","PeriodicalId":508934,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/191445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fault diagnosis in rotating machinery is crucial for ensuring the safe and dependable operation of intricate mechanical systems. Addressing the limitations inherent in traditional deep learning approaches concerning extended time sequence encoding and subpar generalization capability is paramount. The study utilizes the Gramian Angular Field (GAF) and Squeeze and Excitation (SE) attention mechanisms to alleviate these constraints. GAF enhances feature extraction by emphasizing the angular relationships among adjacent signal points to uncover latent fault characteristics. Simultaneously, through the integration of SE with DenseNet architecture, the network facilitates global information exchange and improves multi-scale fusion, thereby enhancing the precise identification of fault type and location within the signal. Experiments conducted on two datasets achieved accuracies of 100% and 99.85%, respectively, outperforming other methods and models, thereby validating the effectiveness of this study.
基于 SEDenseNet 和 Gramian Angular Field 的旋转机械故障诊断方法
旋转机械的故障诊断对于确保复杂机械系统的安全可靠运行至关重要。解决传统深度学习方法在时间序列编码和泛化能力方面固有的局限性至关重要。本研究利用格拉米安角场(GAF)和挤压与激励(SE)注意机制来缓解这些限制。GAF 通过强调相邻信号点之间的角度关系来揭示潜在的故障特征,从而加强特征提取。同时,通过将 SE 与 DenseNet 架构相结合,该网络促进了全局信息交换并改善了多尺度融合,从而提高了对信号中故障类型和位置的精确识别。在两个数据集上进行的实验分别取得了 100% 和 99.85% 的准确率,优于其他方法和模型,从而验证了本研究的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信