NLSE: A Python package to solve the nonlinear Schrödinger equation

Tangui Aladjidi, C. Piekarski, Q. Glorieux
{"title":"NLSE: A Python package to solve the nonlinear\nSchrödinger equation","authors":"Tangui Aladjidi, C. Piekarski, Q. Glorieux","doi":"10.21105/joss.06607","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrödinger equation (NLSE) is a general nonlinear equation used to model the propagation of light in nonlinear media. This equation is mathematically isomorphic to the Gross-Pitaevskii equation (GPE) (Pitaevskij & Stringari, 2016) describing the evolution of cold atomic ensembles. Recently, the growing field of quantum fluids of light (Carusotto & Ciuti, 2013) has proven a fruitful testbed for several fundamental quantum and classical phenomena such as superfluidity (Michel et al., 2018) or turbulence (Baker-Rasooli et al., 2023). Providing a flexible, modern and performant framework to solve these equations is crucial to model realistic experimental scenarios.","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"31 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21105/joss.06607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear Schrödinger equation (NLSE) is a general nonlinear equation used to model the propagation of light in nonlinear media. This equation is mathematically isomorphic to the Gross-Pitaevskii equation (GPE) (Pitaevskij & Stringari, 2016) describing the evolution of cold atomic ensembles. Recently, the growing field of quantum fluids of light (Carusotto & Ciuti, 2013) has proven a fruitful testbed for several fundamental quantum and classical phenomena such as superfluidity (Michel et al., 2018) or turbulence (Baker-Rasooli et al., 2023). Providing a flexible, modern and performant framework to solve these equations is crucial to model realistic experimental scenarios.
NLSE:求解非线性薛定谔方程的 Python 软件包
非线性薛定谔方程(NLSE)是一个通用非线性方程,用于模拟光在非线性介质中的传播。该方程在数学上与描述冷原子团演变的格罗斯-皮塔耶夫斯基方程(GPE)(Pitaevskij & Stringari, 2016)同构。最近,不断发展的光量子流体领域(Carusotto & Ciuti,2013 年)已被证明是几种基本量子和经典现象(如超流体(Michel 等人,2018 年)或湍流(Baker-Rasooli 等人,2023 年))的富有成效的试验平台。提供一个灵活、现代和高性能的框架来求解这些方程,对于模拟现实的实验场景至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信