model for converting data into NoSQL data warehouse for developing a real-time financial data warehouse system

Thanin Muangpool, Klaokanlaya Silachan, Sanya Kuankid
{"title":"model for converting data into NoSQL data warehouse for developing a real-time financial data warehouse system","authors":"Thanin Muangpool, Klaokanlaya Silachan, Sanya Kuankid","doi":"10.53848/ssstj.v11i2.762","DOIUrl":null,"url":null,"abstract":"This research introduces a novel model, the Financial Data Warehouses API (FDW-API), developed using PHP, Node.js, and Express.js. The model is designed to transform banking credit dataset information into a data warehouse format using a Non-Only SQL (NoSQL) database, stored in JSON format. Three types of databases were employed: MongoDB Node, MongoDB Serverless, and Cassandra. The study includes a comparative analysis of the data retrieval speed from all three databases. The model's applicability was tested in a real-time credit approval web application, demonstrating its effectiveness in transforming and storing data. Testing involved loading datasets ranging from 200, 300, 400, 500, 600, 800, and 1000 entries. Results indicate that the MongoDB serverless database outperformed others in terms of efficiency. Additionally, the FDW-API model streamlines data transformation and storage, facilitating real-time analysis and decision-making for financial institutions and data-driven businesses. Its flexibility integrates seamlessly with existing systems, reducing development time and costs, while its scalability accommodates growing data volumes and evolving business needs, providing a valuable tool for strategic insights and competitive advantage.","PeriodicalId":518135,"journal":{"name":"Suan Sunandha Science and Technology Journal","volume":"96 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suan Sunandha Science and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53848/ssstj.v11i2.762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a novel model, the Financial Data Warehouses API (FDW-API), developed using PHP, Node.js, and Express.js. The model is designed to transform banking credit dataset information into a data warehouse format using a Non-Only SQL (NoSQL) database, stored in JSON format. Three types of databases were employed: MongoDB Node, MongoDB Serverless, and Cassandra. The study includes a comparative analysis of the data retrieval speed from all three databases. The model's applicability was tested in a real-time credit approval web application, demonstrating its effectiveness in transforming and storing data. Testing involved loading datasets ranging from 200, 300, 400, 500, 600, 800, and 1000 entries. Results indicate that the MongoDB serverless database outperformed others in terms of efficiency. Additionally, the FDW-API model streamlines data transformation and storage, facilitating real-time analysis and decision-making for financial institutions and data-driven businesses. Its flexibility integrates seamlessly with existing systems, reducing development time and costs, while its scalability accommodates growing data volumes and evolving business needs, providing a valuable tool for strategic insights and competitive advantage.
将数据转换为 NoSQL 数据仓库的模型,用于开发实时金融数据仓库系统
本研究介绍了一种使用 PHP、Node.js 和 Express.js 开发的新型模型--金融数据仓库 API(FDW-API)。该模型旨在使用以 JSON 格式存储的非专用 SQL(NoSQL)数据库,将银行信贷数据集信息转换为数据仓库格式。采用了三种类型的数据库:MongoDB Node、MongoDB Serverless 和 Cassandra。研究包括对所有三种数据库的数据检索速度进行比较分析。该模型的适用性在一个实时信贷审批网络应用程序中进行了测试,证明了其在转换和存储数据方面的有效性。测试包括加载 200、300、400、500、600、800 和 1000 条目的数据集。结果表明,MongoDB 无服务器数据库在效率方面优于其他数据库。此外,FDW-API模型简化了数据转换和存储过程,有助于金融机构和数据驱动型企业进行实时分析和决策。其灵活性可与现有系统无缝集成,减少开发时间和成本,同时其可扩展性可适应不断增长的数据量和不断变化的业务需求,为战略洞察力和竞争优势提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信