N. Duronea, L. Bronfman, M. Ortega, L. Suad, G. Baume, E. Mendoza, M. Carvajal, S. Cichowolski, E. M. Arnal, R. Finger, M. Merello, R. Gamen
{"title":"Revisiting the massive star-forming complex RCW 122: New millimeter and submillimeter study","authors":"N. Duronea, L. Bronfman, M. Ortega, L. Suad, G. Baume, E. Mendoza, M. Carvajal, S. Cichowolski, E. M. Arnal, R. Finger, M. Merello, R. Gamen","doi":"10.1051/0004-6361/202349136","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new multifrequency study of the giant star-forming complex RCW\\,122. We used molecular data obtained with the ASTE 10 m and the APEX 12 m telescopes, along with infrared observations spanning from 3.6 to 870 obtained from available databases. We also incorporated a range of public datasets, including the radio continuum at 3 GHz, narrowband Halpha images, and deep JHK photometry. Our analysis focuses mostly on cataloged ATLASGAL sources, showcasing a spectrum of evolutionary stages from infrared dark cloud (IRDC)/high-mass protostellar object (HMPO) to ultra-compact HII region (UCHII), as inferred from preliminary inspections of the public dataset. Based on ASTE HCO$^+$(4--3) and CO(3--2) data, we identified five molecular clumps, designated A, B, C, D, and E, as molecular counterparts of the ATLASGAL sources. These clumps have radial velocities ranging from sim --15 to --10 confirming their association with RCW\\,122. In addition, we report the detection of 20 transitions from 11 distinct molecules in the APEX spectra in the frequency ranges from 228.538 GHz to 232.538 GHz and 218.3 to 222.3 GHz, unveiling a diverse chemical complexity among the clumps. Utilizing CO(2--1) and C18O(2--1) data taken from the observations with the APEX telescope we estimated the total LTE molecular mass, ranging from 200 $M_ odot $ (clump A) to 4400 $M_ odot $ (clump B). Our mid- to far-infrared (MIR-FIR) flux density analysis yielded minimum dust temperatures of 23.7 K (clump A) to maximum temperatures of 33.9 K (clump B), indicating varying degrees of internal heating among the clumps. The bolometric luminosities span 1.7times 10$^3$ L$_ odot $ (clump A) to 2.4times 10$^5$ L$_ odot $ (clump B), while the total (dust+gas) mass ranges from 350 $M_ odot $ (clump A) to 3800 $M_ odot $ (clump B). Our analysis of the molecular line richness, $L/M$ ratios, and CH$_3$CCH and dust temperatures reveals an evolutionary sequence of A/Erightarrow Crightarrow D/B, consistent with preliminary inferences of the ATLASGAL sources. In this context, clumps A and E exhibit early stages of collapse, with clump A likely in an early HMPO phase, which is supported by identifying a candidate molecular outflow. Clump E appears to be in an intermediate stage between IRDC and HMPO. Clumps D and B show evidence of being in the UCHII phase, with clump B likely more advanced. Clump C likely represents an intermediate stage between HMPO and HMC. Our findings suggest clump B is undergoing ionization and heating by multiple stellar and protostellar members of the stellar cluster DBS\\,119. Meanwhile, other cluster members may be responsible for ionizing other regions of RCW\\,122 that have evolved into fully developed HII regions, beyond the molecular dissociation stage.","PeriodicalId":8585,"journal":{"name":"Astronomy & Astrophysics","volume":"119 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202349136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a new multifrequency study of the giant star-forming complex RCW\,122. We used molecular data obtained with the ASTE 10 m and the APEX 12 m telescopes, along with infrared observations spanning from 3.6 to 870 obtained from available databases. We also incorporated a range of public datasets, including the radio continuum at 3 GHz, narrowband Halpha images, and deep JHK photometry. Our analysis focuses mostly on cataloged ATLASGAL sources, showcasing a spectrum of evolutionary stages from infrared dark cloud (IRDC)/high-mass protostellar object (HMPO) to ultra-compact HII region (UCHII), as inferred from preliminary inspections of the public dataset. Based on ASTE HCO$^+$(4--3) and CO(3--2) data, we identified five molecular clumps, designated A, B, C, D, and E, as molecular counterparts of the ATLASGAL sources. These clumps have radial velocities ranging from sim --15 to --10 confirming their association with RCW\,122. In addition, we report the detection of 20 transitions from 11 distinct molecules in the APEX spectra in the frequency ranges from 228.538 GHz to 232.538 GHz and 218.3 to 222.3 GHz, unveiling a diverse chemical complexity among the clumps. Utilizing CO(2--1) and C18O(2--1) data taken from the observations with the APEX telescope we estimated the total LTE molecular mass, ranging from 200 $M_ odot $ (clump A) to 4400 $M_ odot $ (clump B). Our mid- to far-infrared (MIR-FIR) flux density analysis yielded minimum dust temperatures of 23.7 K (clump A) to maximum temperatures of 33.9 K (clump B), indicating varying degrees of internal heating among the clumps. The bolometric luminosities span 1.7times 10$^3$ L$_ odot $ (clump A) to 2.4times 10$^5$ L$_ odot $ (clump B), while the total (dust+gas) mass ranges from 350 $M_ odot $ (clump A) to 3800 $M_ odot $ (clump B). Our analysis of the molecular line richness, $L/M$ ratios, and CH$_3$CCH and dust temperatures reveals an evolutionary sequence of A/Erightarrow Crightarrow D/B, consistent with preliminary inferences of the ATLASGAL sources. In this context, clumps A and E exhibit early stages of collapse, with clump A likely in an early HMPO phase, which is supported by identifying a candidate molecular outflow. Clump E appears to be in an intermediate stage between IRDC and HMPO. Clumps D and B show evidence of being in the UCHII phase, with clump B likely more advanced. Clump C likely represents an intermediate stage between HMPO and HMC. Our findings suggest clump B is undergoing ionization and heating by multiple stellar and protostellar members of the stellar cluster DBS\,119. Meanwhile, other cluster members may be responsible for ionizing other regions of RCW\,122 that have evolved into fully developed HII regions, beyond the molecular dissociation stage.