Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning

A. Kesorn, Rutchapon Hunkao, Cheewawut Na Talang, Chanaprom Cholsuk, A. Sinsarp, Tobias Vogl, S. Suwanna, S. Yuma
{"title":"Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning","authors":"A. Kesorn, Rutchapon Hunkao, Cheewawut Na Talang, Chanaprom Cholsuk, A. Sinsarp, Tobias Vogl, S. Suwanna, S. Yuma","doi":"10.1088/2632-2153/ad66ae","DOIUrl":null,"url":null,"abstract":"\n We applied tree-based machine learning algorithms to predict the formation energy of impurities in 2D materials, where adsorbates and interstitial defects are investigated. Regression models based on random forest (RF), gradient boosting regression (GBR), histogram-based gradient-boosting regression (HGBR), and light gradient-boosting machine (LightGBM) algorithms are employed for training, testing, cross validation, and blind testing. We utilized chemical features from fundamental properties of atoms and supplemented them with structural features from the interaction of the added chemical element with its neighboring host atoms via the Jacobi-Legendre (JL) polynomials. Overall, the prediction accuracy yields optimal $\\text{MAE} \\approx 0.518$, $\\text{RMSE} \\approx 1.14$, and $R^2 \\approx 0.855$. When trained separately, we obtained lower residual errors RMSE and MAE, and higher $R^2$ value for predicting the formation energy in the adsorbates than in the interstitial defects. In both cases, the inclusion of the structural features via the JL polynomials improves the prediction accuracy of the formation energy in terms of decreasing RMSE and MAE, and increasing $R^2$. This work demonstrates the potential and application of physically meaningful features to obtain physical properties of impurities in 2D materials that otherwise would require higher computational cost.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"118 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad66ae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We applied tree-based machine learning algorithms to predict the formation energy of impurities in 2D materials, where adsorbates and interstitial defects are investigated. Regression models based on random forest (RF), gradient boosting regression (GBR), histogram-based gradient-boosting regression (HGBR), and light gradient-boosting machine (LightGBM) algorithms are employed for training, testing, cross validation, and blind testing. We utilized chemical features from fundamental properties of atoms and supplemented them with structural features from the interaction of the added chemical element with its neighboring host atoms via the Jacobi-Legendre (JL) polynomials. Overall, the prediction accuracy yields optimal $\text{MAE} \approx 0.518$, $\text{RMSE} \approx 1.14$, and $R^2 \approx 0.855$. When trained separately, we obtained lower residual errors RMSE and MAE, and higher $R^2$ value for predicting the formation energy in the adsorbates than in the interstitial defects. In both cases, the inclusion of the structural features via the JL polynomials improves the prediction accuracy of the formation energy in terms of decreasing RMSE and MAE, and increasing $R^2$. This work demonstrates the potential and application of physically meaningful features to obtain physical properties of impurities in 2D materials that otherwise would require higher computational cost.
利用树型机器学习预测二维材料中性单原子杂质的形成能
我们应用基于树的机器学习算法来预测二维材料中杂质的形成能,其中对吸附剂和间隙缺陷进行了研究。基于随机森林(RF)、梯度提升回归(GBR)、直方图梯度提升回归(HGBR)和光梯度提升机(LightGBM)算法的回归模型被用于训练、测试、交叉验证和盲测。我们利用了原子基本性质的化学特征,并通过雅各比-列根德(JL)多项式补充了新增化学元素与其相邻主原子相互作用的结构特征。总体而言,预测精度达到了最佳值\约为 0.518$,$text{RMSE}约为 1.14$。\约为 1.14$,$R^2 约为 0.855$。当分别训练时,我们得到了更低的残差 RMSE 和 MAE,以及预测吸附剂形成能量比预测间隙缺陷形成能量更高的 $R^2$ 值。在这两种情况下,通过 JL 多项式加入结构特征都能提高形成能的预测精度,即降低 RMSE 和 MAE,提高 R^2$ 值。这项工作证明了有物理意义的特征在获取二维材料中杂质的物理性质方面的潜力和应用,否则将需要更高的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信