Preparation and characterization of Ni/Al2O3 catalyst for catalytic reduction of CO2 to formic acid in the presence of hydrazine hydrate as a hydrogen source
{"title":"Preparation and characterization of Ni/Al2O3 catalyst for catalytic reduction of CO2 to formic acid in the presence of hydrazine hydrate as a hydrogen source","authors":"Rajeev Ranjan, Prakash Biswas","doi":"10.1515/ijcre-2024-0038","DOIUrl":null,"url":null,"abstract":"\n In this study, the catalytic reduction of CO2 into formic acid was investigated over a Ni/Al2O3 catalyst synthesized by wet-impregnation technique. The CO2 hydrogenation reaction was performed in a slurry reactor in the temperature range of 100–300 °C and at an autogenerated pressure. The Na2CO3 was used as a CO2 source, and hydrazine hydrate was used as a hydrogen source. The effect of reaction temperature, catalyst metal loading (5–15 wt%), and catalyst amount were optimized for the higher yield of formic acid. The catalyst was very selective to formic acid, and a very high formic acid selectivity of ∼99 % was achieved in the presence of 10 wt% Ni/Al2O3 catalyst at a much lower reaction temperature of 250 °C. The obtained formic acid yield was ∼53.5 %. The result demonstrated that the Ni/Al2O3 catalyst developed was very promising for the selective hydrogenation of CO2 molecules to formic acid via the in situ hydrogenation from hydrazine hydrate.","PeriodicalId":502324,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"132 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijcre-2024-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the catalytic reduction of CO2 into formic acid was investigated over a Ni/Al2O3 catalyst synthesized by wet-impregnation technique. The CO2 hydrogenation reaction was performed in a slurry reactor in the temperature range of 100–300 °C and at an autogenerated pressure. The Na2CO3 was used as a CO2 source, and hydrazine hydrate was used as a hydrogen source. The effect of reaction temperature, catalyst metal loading (5–15 wt%), and catalyst amount were optimized for the higher yield of formic acid. The catalyst was very selective to formic acid, and a very high formic acid selectivity of ∼99 % was achieved in the presence of 10 wt% Ni/Al2O3 catalyst at a much lower reaction temperature of 250 °C. The obtained formic acid yield was ∼53.5 %. The result demonstrated that the Ni/Al2O3 catalyst developed was very promising for the selective hydrogenation of CO2 molecules to formic acid via the in situ hydrogenation from hydrazine hydrate.