Coarse-graining model reveals universal exponential scaling in axonal length distributions

Máté Józsa, Mária Ercsey-Ravasz, Z. Lázár
{"title":"Coarse-graining model reveals universal exponential scaling in axonal length distributions","authors":"Máté Józsa, Mária Ercsey-Ravasz, Z. Lázár","doi":"10.1088/2632-072x/ad66a6","DOIUrl":null,"url":null,"abstract":"\n The Exponential Distance Rule (EDR) is a well-documented phenomenon suggesting that the distribution of axonal lengths in the brain follows an exponential decay pattern. Nevertheless, individual-level axon data supporting this assertion is limited to Drosophila and mice, while inter-region connectome data is also accessible for macaques, marmosets, and humans. Although axon-level data in Drosophila and mice support the generality of the EDR, region-level data can significantly deviate from the exponential curve. In this study, we establish that the axon number-weighted length distribution of region-level connections converges onto a universal curve when rescaled to the mean axonal length, demonstrating similarities across different species. To explain these observations, we present a simple mathematical model that attributes the observed deviations from the EDR in the weighted length distribution of inter-regional connectomes to the inherent coarse-graining effect of translating from neuron-level to region-level connectomics. We demonstrate that the qualitative predictions of the model are robust with respect to various aspects of brain region-geometry, including dimensionality, resolution, and curvature. On the other hand, the performance of the model exhibits a monotonous dependence on the amount of region-geometry related detail incorporated into the model. The findings validate the universality of the EDR rule across various species, paving the way for further in-depth exploration of this remarkably simple principle.","PeriodicalId":516285,"journal":{"name":"Journal of Physics: Complexity","volume":"139 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad66a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Exponential Distance Rule (EDR) is a well-documented phenomenon suggesting that the distribution of axonal lengths in the brain follows an exponential decay pattern. Nevertheless, individual-level axon data supporting this assertion is limited to Drosophila and mice, while inter-region connectome data is also accessible for macaques, marmosets, and humans. Although axon-level data in Drosophila and mice support the generality of the EDR, region-level data can significantly deviate from the exponential curve. In this study, we establish that the axon number-weighted length distribution of region-level connections converges onto a universal curve when rescaled to the mean axonal length, demonstrating similarities across different species. To explain these observations, we present a simple mathematical model that attributes the observed deviations from the EDR in the weighted length distribution of inter-regional connectomes to the inherent coarse-graining effect of translating from neuron-level to region-level connectomics. We demonstrate that the qualitative predictions of the model are robust with respect to various aspects of brain region-geometry, including dimensionality, resolution, and curvature. On the other hand, the performance of the model exhibits a monotonous dependence on the amount of region-geometry related detail incorporated into the model. The findings validate the universality of the EDR rule across various species, paving the way for further in-depth exploration of this remarkably simple principle.
粗粒化模型揭示了轴突长度分布的普遍指数缩放规律
指数距离规则(EDR)是一种有据可查的现象,表明大脑中轴突长度的分布遵循指数衰减模式。然而,支持这一论断的个体水平轴突数据仅限于果蝇和小鼠,而猕猴、狨猴和人类的区域间连接组数据也可以获得。虽然果蝇和小鼠的轴突级数据支持 EDR 的普遍性,但区域级数据会明显偏离指数曲线。在本研究中,我们发现区域级连接的轴突数加权长度分布在与平均轴突长度重估后会收敛到一条通用曲线上,这表明不同物种之间存在相似性。为了解释这些观察结果,我们提出了一个简单的数学模型,将观察到的区域间连接组加权长度分布偏离 EDR 的现象归因于从神经元水平到区域水平连接组学转换过程中固有的粗粒化效应。我们证明,该模型的定性预测对大脑区域几何的各个方面都很稳健,包括维度、分辨率和曲率。另一方面,该模型的性能与模型中包含的区域几何相关细节的数量呈单调依赖关系。这些发现验证了 EDR 规则在不同物种中的普遍性,为进一步深入探讨这一非常简单的原理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信