N. Laxague, C. Zappa, Andrew R. Mahoney, J. Goodwin, C. Harris, Robert E. Schaeffer, R. Schaeffer Sr., S. Betcher, Donna D. W. Hauser, C. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, Alex Whiting
{"title":"The radiative and geometric properties of melting first-year landfast sea ice in the Arctic","authors":"N. Laxague, C. Zappa, Andrew R. Mahoney, J. Goodwin, C. Harris, Robert E. Schaeffer, R. Schaeffer Sr., S. Betcher, Donna D. W. Hauser, C. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, Alex Whiting","doi":"10.5194/tc-18-3297-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In polar regions, sea ice is a crucial mediator of the interaction between Earth's atmosphere and oceans. Its formation and breakup is intimately connected with large-scale climatic processes, local weather patterns, and the use of sea ice in coastal Arctic regions by Indigenous people. In order to investigate the physical phenomena at the heart of this process, a set of targeted, intensive observations were made over spring sea ice melt and breakup in Kotzebue Sound, Alaska. These observations were planned and executed through a collaborative effort in which an Indigenous Elder advisory council from Kotzebue and scientists participated in co-production of hypotheses and observational research, including a stronger understanding of the physical properties of sea ice during spring melt. Here we present the results of observations performed using high-endurance, fixed-wing uncrewed aerial vehicles (UAVs) containing custom-built scientific payloads. Repeated flights over the measurement period captured the early stages of the transition from a white, snow-covered state to a broken-up, bare blue-green state. We found that the reflectance of sea ice features depends strongly on their size. Snow patches get darker as they get smaller, an effect owed to the geometric relationship between the bright interior and the darker, melting feature edges. Conversely, bare patches get darker as they get larger. For the largest ice features observed, bare blue-green ice patches were found to be ≈ 20 % less reflective than average across all observational cases, while large snowy white ice patches were found to be ≈ 20 % more reflective than that same average.\n","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"72 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cryosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/tc-18-3297-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. In polar regions, sea ice is a crucial mediator of the interaction between Earth's atmosphere and oceans. Its formation and breakup is intimately connected with large-scale climatic processes, local weather patterns, and the use of sea ice in coastal Arctic regions by Indigenous people. In order to investigate the physical phenomena at the heart of this process, a set of targeted, intensive observations were made over spring sea ice melt and breakup in Kotzebue Sound, Alaska. These observations were planned and executed through a collaborative effort in which an Indigenous Elder advisory council from Kotzebue and scientists participated in co-production of hypotheses and observational research, including a stronger understanding of the physical properties of sea ice during spring melt. Here we present the results of observations performed using high-endurance, fixed-wing uncrewed aerial vehicles (UAVs) containing custom-built scientific payloads. Repeated flights over the measurement period captured the early stages of the transition from a white, snow-covered state to a broken-up, bare blue-green state. We found that the reflectance of sea ice features depends strongly on their size. Snow patches get darker as they get smaller, an effect owed to the geometric relationship between the bright interior and the darker, melting feature edges. Conversely, bare patches get darker as they get larger. For the largest ice features observed, bare blue-green ice patches were found to be ≈ 20 % less reflective than average across all observational cases, while large snowy white ice patches were found to be ≈ 20 % more reflective than that same average.