Matrix Factorization and Some Fast Discrete Transforms

Axioms Pub Date : 2024-07-23 DOI:10.3390/axioms13080495
Iliya Bouyukliev, Mariya Dzhumalieva-Stoeva, Paskal Piperkov
{"title":"Matrix Factorization and Some Fast Discrete Transforms","authors":"Iliya Bouyukliev, Mariya Dzhumalieva-Stoeva, Paskal Piperkov","doi":"10.3390/axioms13080495","DOIUrl":null,"url":null,"abstract":"In this paper, three discrete transforms related to vector spaces over finite fields are studied. For our purposes, and according to the properties of the finite fields, the most suitable transforms are as follows: for binary fields, this is the Walsh–Hadamard transform; for odd prime fields, the Vilenkin–Chrestenson transform; and for composite fields, the trace transform. A factorization of the transform matrices using Kronecker power is given so that the considered discrete transforms are reduced to the fast discrete transforms. Examples and applications are also presented of the considered transforms in coding theory for calculating the weight distribution of a linear code.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"17 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13080495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, three discrete transforms related to vector spaces over finite fields are studied. For our purposes, and according to the properties of the finite fields, the most suitable transforms are as follows: for binary fields, this is the Walsh–Hadamard transform; for odd prime fields, the Vilenkin–Chrestenson transform; and for composite fields, the trace transform. A factorization of the transform matrices using Kronecker power is given so that the considered discrete transforms are reduced to the fast discrete transforms. Examples and applications are also presented of the considered transforms in coding theory for calculating the weight distribution of a linear code.
矩阵因式分解和一些快速离散变换
本文研究了与有限域上向量空间有关的三种离散变换。就我们的目的而言,根据有限域的特性,最合适的变换如下:对于二元域,是沃尔什-哈达玛变换;对于奇素数域,是维伦金-克里斯滕森变换;对于复合域,是迹变换。利用 Kronecker 幂对变换矩阵进行因式分解,从而将所考虑的离散变换简化为快速离散变换。此外,还介绍了所考虑的变换在编码理论中计算线性编码权重分布的示例和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信