Application of graphical analysis and principal components to identify the effect of genotype × trait in maize hybrids

IF 1.3 Q3 AGRONOMY
Seyed Habib Shojaei, Mohammad Reza Bihamta, Seyed Mohammad Nasir Mousavi, Seyed Hamed Qasemi, Mohammad Hossein Bijeh Keshavarzi, Ali Omrani
{"title":"Application of graphical analysis and principal components to identify the effect of genotype × trait in maize hybrids","authors":"Seyed Habib Shojaei,&nbsp;Mohammad Reza Bihamta,&nbsp;Seyed Mohammad Nasir Mousavi,&nbsp;Seyed Hamed Qasemi,&nbsp;Mohammad Hossein Bijeh Keshavarzi,&nbsp;Ali Omrani","doi":"10.1002/agg2.20548","DOIUrl":null,"url":null,"abstract":"<p>In order to identify the effect of genotype × trait, 20 maize (<i>Zea mays</i> L.) hybrids were cultivated and investigated in a randomized complete block design in three replications in the Karaj region. The results of the analysis of variance showed that the effect of genotype in terms of all traits except for the traits of days until the tassel dries, peduncle outside the flag leaf, tassel length, the number of fill seeds, and the depth of the seeds are significantly different. Based on the mean comparison done by Duncan's method, G3, G6, G7, and G4 genotypes were identified as favorable hybrids. Based on the graphic analysis, the genotypes G5, G4, G6, G3, G9, and G14 can be identified as desirable hybrids. The correlation diagram indicated that the grain yield trait has a positive correlation with tassel length, leaf length, leaf width, and leaf surface traits. Based on the principal component analysis, the first 10 components explained more than 74% of the data variance. The traits were classified into 10 components: components of ear characteristics, time characteristics in terms of maturity, leaf characteristics, characteristics of maize plant 1 (cob corn diameter, peduncle length, and grain yield traits), characteristics of maize plant 2 (number of tassel branches, leaf surface, and grain yield traits), physiological characteristics and germination, the crown part of the ear characteristics, grain characteristics, grain yield, and characteristics of the ear head. The experiment results indicated that G8, G15, G1, and G6 hybrids were more favorable in terms of grain yield trait.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20548","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to identify the effect of genotype × trait, 20 maize (Zea mays L.) hybrids were cultivated and investigated in a randomized complete block design in three replications in the Karaj region. The results of the analysis of variance showed that the effect of genotype in terms of all traits except for the traits of days until the tassel dries, peduncle outside the flag leaf, tassel length, the number of fill seeds, and the depth of the seeds are significantly different. Based on the mean comparison done by Duncan's method, G3, G6, G7, and G4 genotypes were identified as favorable hybrids. Based on the graphic analysis, the genotypes G5, G4, G6, G3, G9, and G14 can be identified as desirable hybrids. The correlation diagram indicated that the grain yield trait has a positive correlation with tassel length, leaf length, leaf width, and leaf surface traits. Based on the principal component analysis, the first 10 components explained more than 74% of the data variance. The traits were classified into 10 components: components of ear characteristics, time characteristics in terms of maturity, leaf characteristics, characteristics of maize plant 1 (cob corn diameter, peduncle length, and grain yield traits), characteristics of maize plant 2 (number of tassel branches, leaf surface, and grain yield traits), physiological characteristics and germination, the crown part of the ear characteristics, grain characteristics, grain yield, and characteristics of the ear head. The experiment results indicated that G8, G15, G1, and G6 hybrids were more favorable in terms of grain yield trait.

Abstract Image

应用图形分析和主成分确定玉米杂交种中基因型×性状的影响
为了确定基因型×性状的影响,在卡拉季地区对 20 个玉米(Zea mays L.)杂交种进行了栽培和研究,采用随机完全区组设计,三次重复。方差分析结果表明,除抽穗干枯天数、旗叶外花序梗、抽穗长度、饱满种子数和种子深度等性状外,基因型对所有性状的影响均有显著差异。根据邓肯法进行的均值比较,G3、G6、G7 和 G4 基因型被确定为有利杂交种。根据图形分析,基因型 G5、G4、G6、G3、G9 和 G14 可被确定为理想杂交种。相关图表明,谷物产量性状与穗长、叶长、叶宽和叶面性状呈正相关。根据主成分分析,前 10 个成分解释了 74% 以上的数据方差。性状分为 10 个成分:穗部性状成分、成熟期时间性状、叶片性状、玉米植株 1 的性状(玉米棒直径、梗长和籽粒产量性状)、玉米植株 2 的性状(穗分枝数、叶面和籽粒产量性状)、生理性状和发芽率、穗冠部分性状、籽粒性状、籽粒产量和穗头性状。试验结果表明,G8、G15、G1 和 G6 杂交种在谷粒产量性状方面更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信