J. Egger, H. Osborn, D. Kubyshkina, C. Mordasini, Y. Alibert, M. Günther, M. Lendl, A. Brandeker, A. Heitzmann, A. Leleu, M. Damasso, A. Bonfanti, T. G. Wilson, S. Sousa, J. Haldemann, L. Delrez, M. Hooton, T. Zingales, R. Luque, R. Alonso, J. Asquier, T. Bárczy, D. Barrado Navascues, S. Barros, Wolfgang Baumjohann, W. Benz, N. Billot, L. Borsato, C. Broeg, M. Buder, A. Castro-González, A. Collier Cameron, A. Correia, D. Cortes, S. Csizmadia, P. E. Cubillos, M. B. Davies, M. Deleuil, A. Deline, O. Demangeon, B. Demory, A. Derekas, B. Edwards, D. Ehrenreich, A. Erikson, A. Fortier, L. Fossati, M. Fridlund, D. Gandolfi, K. Gazeas, M. Gillon, M. Güdel, C. Helling, K. Isaak, L. Kiss, J. Korth, K. Lam, J. Laskar, B. Lavie, A. Lecavelier des Etangs, C. Lovis, A. Luntzer, D. Magrin, P. Maxted, B. Merín, M. Munari, V. Nascimbeni, G. Olofsson, R. Ottensamer, I. Pagano, E. Pallé, G. Peter, D. Piazza, G. Piotto, D. Pollacco, D. Queloz, R. Ragazzoni, N. Rando, H. Rauer, I. Ribas, J. Rodrigues, N. Santos, G. Scandaria
{"title":"Unveiling the internal structure and formation history of the three planets transiting (TOI-469) with CHEOPS","authors":"J. Egger, H. Osborn, D. Kubyshkina, C. Mordasini, Y. Alibert, M. Günther, M. Lendl, A. Brandeker, A. Heitzmann, A. Leleu, M. Damasso, A. Bonfanti, T. G. Wilson, S. Sousa, J. Haldemann, L. Delrez, M. Hooton, T. Zingales, R. Luque, R. Alonso, J. Asquier, T. Bárczy, D. Barrado Navascues, S. Barros, Wolfgang Baumjohann, W. Benz, N. Billot, L. Borsato, C. Broeg, M. Buder, A. Castro-González, A. Collier Cameron, A. Correia, D. Cortes, S. Csizmadia, P. E. Cubillos, M. B. Davies, M. Deleuil, A. Deline, O. Demangeon, B. Demory, A. Derekas, B. Edwards, D. Ehrenreich, A. Erikson, A. Fortier, L. Fossati, M. Fridlund, D. Gandolfi, K. Gazeas, M. Gillon, M. Güdel, C. Helling, K. Isaak, L. Kiss, J. Korth, K. Lam, J. Laskar, B. Lavie, A. Lecavelier des Etangs, C. Lovis, A. Luntzer, D. Magrin, P. Maxted, B. Merín, M. Munari, V. Nascimbeni, G. Olofsson, R. Ottensamer, I. Pagano, E. Pallé, G. Peter, D. Piazza, G. Piotto, D. Pollacco, D. Queloz, R. Ragazzoni, N. Rando, H. Rauer, I. Ribas, J. Rodrigues, N. Santos, G. Scandaria","doi":"10.1051/0004-6361/202450472","DOIUrl":null,"url":null,"abstract":"Multiplanetary systems spanning the radius valley are ideal testing grounds for exploring the different proposed explanations for the observed bimodality in the radius distribution of close-in exoplanets. One such system is (TOI-469), an evolved K0V star hosting two super-Earths and one sub-Neptune. We observed \\ with CHEOPS for a total of 9.6 days, which we modelled jointly with two sectors of TESS data to derive planetary radii of $3.410 and $1.538 R$_ for planets b, c, and d, which orbit with periods of 13.6, 3.5, and 6.4 days, respectively. For planet d this value deviates by more than 3sigma from the median value reported in the discovery paper, leading us to conclude that caution is required when using TESS photometry to determine the radii of small planets with low per-transit signal-to-noise ratios and large gaps between observations. Given the high precision of these new radii, combining them with published RVs from ESPRESSO and HIRES provides us with ideal conditions to investigate the internal structure and formation pathways of the planets in the system. We introduced the publicly available code plaNETic a fast and robust neural network-based Bayesian internal structure modelling framework. We then applied hydrodynamic models to explore the upper atmospheric properties of these inferred structures. Finally, we identified planetary system analogues in a synthetic population generated with the Bern model for planet formation and evolution. Based on this analysis, we find that the planets likely formed on opposing sides of the water iceline from a protoplanetary disk with an intermediate solid mass. We finally report that the observed parameters of the \\ system are compatible with a scenario where the second peak in the bimodal radius distribution corresponds to sub-Neptunes with a pure H/He envelope and with a scenario with water-rich sub-Neptunes.","PeriodicalId":8585,"journal":{"name":"Astronomy & Astrophysics","volume":"61 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplanetary systems spanning the radius valley are ideal testing grounds for exploring the different proposed explanations for the observed bimodality in the radius distribution of close-in exoplanets. One such system is (TOI-469), an evolved K0V star hosting two super-Earths and one sub-Neptune. We observed \ with CHEOPS for a total of 9.6 days, which we modelled jointly with two sectors of TESS data to derive planetary radii of $3.410 and $1.538 R$_ for planets b, c, and d, which orbit with periods of 13.6, 3.5, and 6.4 days, respectively. For planet d this value deviates by more than 3sigma from the median value reported in the discovery paper, leading us to conclude that caution is required when using TESS photometry to determine the radii of small planets with low per-transit signal-to-noise ratios and large gaps between observations. Given the high precision of these new radii, combining them with published RVs from ESPRESSO and HIRES provides us with ideal conditions to investigate the internal structure and formation pathways of the planets in the system. We introduced the publicly available code plaNETic a fast and robust neural network-based Bayesian internal structure modelling framework. We then applied hydrodynamic models to explore the upper atmospheric properties of these inferred structures. Finally, we identified planetary system analogues in a synthetic population generated with the Bern model for planet formation and evolution. Based on this analysis, we find that the planets likely formed on opposing sides of the water iceline from a protoplanetary disk with an intermediate solid mass. We finally report that the observed parameters of the \ system are compatible with a scenario where the second peak in the bimodal radius distribution corresponds to sub-Neptunes with a pure H/He envelope and with a scenario with water-rich sub-Neptunes.