Facile Synthesis of Sodium Alginate (SA)-Based Quaternary Bio-Nanocomposite (SA@Co-Zn-Ce) for Antioxidant Activity and Photocatalytic Degradation of Reactive Red 24

Catalysts Pub Date : 2024-07-24 DOI:10.3390/catal14080471
Sidra Fatima, Sana Javaid, Hira Ahmad, A. Almasoudi, Doaa F. Baamer, Omar Makram Ali, S. Carabineiro, M. Taj
{"title":"Facile Synthesis of Sodium Alginate (SA)-Based Quaternary Bio-Nanocomposite (SA@Co-Zn-Ce) for Antioxidant Activity and Photocatalytic Degradation of Reactive Red 24","authors":"Sidra Fatima, Sana Javaid, Hira Ahmad, A. Almasoudi, Doaa F. Baamer, Omar Makram Ali, S. Carabineiro, M. Taj","doi":"10.3390/catal14080471","DOIUrl":null,"url":null,"abstract":"This study introduces a new strategy for the environmentally friendly catalytic degradation of Reactive Red 24 (RR24) dye using sunlight. We developed a cost-effective quaternary nanocomposite by immobilizing a sodium alginate biopolymer over bioengineered Co-Zn-Ce nanoparticles, forming an SA@Co–Zn–Ce nanocomposite (where SA means sodium alginate). This composite also demonstrated an exceptional antioxidant potential of approximately 89%, attributed to the synergistic effect of sodium alginate and green-synthesized Co–Zn–Ce nanoparticles (biosynthesized using Ocimum sanctum leaf extract as a reducing agent). Scanning electron microscopy revealed grain sizes of 28.6 nm for Co–Zn–Ce NPs and 25.59 nm for SA@Co–Zn–Ce nanocomposites (NCs). X-ray diffraction showed particle sizes of 16.87 nm and 15.43 nm, respectively. Co–Zn–Ce NPs exhibited a zeta potential of 1.99 mV, whereas the sodium alginate-anchored Co–Zn–Ce showed −7.99 mV. This indicated the entrapment of negatively charged ions from sodium alginate, altering the surface charge characteristics and enhancing the photocatalytic degradation of RR24. Dynamic light scattering revealed an average particle size of approximately 81 nm for SA@Co–Zn–Ce NCs, with the larger size due to the influence of water molecules in the colloidal solution affecting hydrodynamic diameter measurement. The SA@Co–Zn–Ce NCs exhibited a CO2 adsorption capacity of 3.29 mmol/g at 25 °C and 4.76 mmol/g at 40 °C, indicating temperature-dependent variations in adsorption capabilities. The specific surface area of Co–Zn–Ce oxide NPs, measured using Brunauer–Emmett–Teller (BET) analysis, was found to be 167.346 m2/g, whereas the SA@Co–Zn–Ce oxide nanocomposite showed a surface area of 24.14 m2/g. BJH analysis revealed average pore diameters of 34.60 Å for Co–Zn–Ce oxide NPs and 9.26 Å for SA@Co–Zn–Ce oxide NCs. Although the immobilization of sodium alginate on Co–Zn–Ce oxide NPs did not increase the adsorption sites and porosity of the composite, as evidenced by the N2 adsorption–desorption isotherms, the SA@Co–Zn–Ce oxide NCs still demonstrated a high photocatalytic degradation efficiency of RR24.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"5 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14080471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new strategy for the environmentally friendly catalytic degradation of Reactive Red 24 (RR24) dye using sunlight. We developed a cost-effective quaternary nanocomposite by immobilizing a sodium alginate biopolymer over bioengineered Co-Zn-Ce nanoparticles, forming an SA@Co–Zn–Ce nanocomposite (where SA means sodium alginate). This composite also demonstrated an exceptional antioxidant potential of approximately 89%, attributed to the synergistic effect of sodium alginate and green-synthesized Co–Zn–Ce nanoparticles (biosynthesized using Ocimum sanctum leaf extract as a reducing agent). Scanning electron microscopy revealed grain sizes of 28.6 nm for Co–Zn–Ce NPs and 25.59 nm for SA@Co–Zn–Ce nanocomposites (NCs). X-ray diffraction showed particle sizes of 16.87 nm and 15.43 nm, respectively. Co–Zn–Ce NPs exhibited a zeta potential of 1.99 mV, whereas the sodium alginate-anchored Co–Zn–Ce showed −7.99 mV. This indicated the entrapment of negatively charged ions from sodium alginate, altering the surface charge characteristics and enhancing the photocatalytic degradation of RR24. Dynamic light scattering revealed an average particle size of approximately 81 nm for SA@Co–Zn–Ce NCs, with the larger size due to the influence of water molecules in the colloidal solution affecting hydrodynamic diameter measurement. The SA@Co–Zn–Ce NCs exhibited a CO2 adsorption capacity of 3.29 mmol/g at 25 °C and 4.76 mmol/g at 40 °C, indicating temperature-dependent variations in adsorption capabilities. The specific surface area of Co–Zn–Ce oxide NPs, measured using Brunauer–Emmett–Teller (BET) analysis, was found to be 167.346 m2/g, whereas the SA@Co–Zn–Ce oxide nanocomposite showed a surface area of 24.14 m2/g. BJH analysis revealed average pore diameters of 34.60 Å for Co–Zn–Ce oxide NPs and 9.26 Å for SA@Co–Zn–Ce oxide NCs. Although the immobilization of sodium alginate on Co–Zn–Ce oxide NPs did not increase the adsorption sites and porosity of the composite, as evidenced by the N2 adsorption–desorption isotherms, the SA@Co–Zn–Ce oxide NCs still demonstrated a high photocatalytic degradation efficiency of RR24.
基于海藻酸钠(SA)的季态生物纳米复合材料(SA@Co-Zn-Ce)的简易合成,用于抗氧化和光催化降解活性红 24
本研究介绍了一种利用阳光催化降解活性红 24(RR24)染料的环境友好型新策略。我们将海藻酸钠生物聚合物固定在生物工程 Co-Zn-Ce 纳米粒子上,形成了 SA@Co-Zn-Ce 纳米复合材料(其中 SA 指海藻酸钠),从而开发出了一种具有成本效益的季纳米复合材料。由于海藻酸钠和绿色合成的 Co-Zn-Ce 纳米粒子(使用圣女果叶提取物作为还原剂进行生物合成)的协同作用,这种复合材料还具有约 89% 的卓越抗氧化潜力。扫描电子显微镜显示,Co-Zn-Ce 纳米粒子的粒径为 28.6 纳米,SA@Co-Zn-Ce 纳米复合材料(NCs)的粒径为 25.59 纳米。X 射线衍射显示粒径分别为 16.87 nm 和 15.43 nm。Co-Zn-Ce NPs 的 zeta 电位为 1.99 mV,而海藻酸钠锚定 Co-Zn-Ce 的 zeta 电位为 -7.99 mV。这表明海藻酸钠截留了带负电荷的离子,改变了表面电荷特性,增强了 RR24 的光催化降解能力。动态光散射显示,SA@Co-Zn-Ce NCs 的平均粒径约为 81 nm,粒径变大的原因是胶体溶液中的水分子影响了流体力学直径的测量。SA@Co-Zn-Ce NCs 在 25 °C 时的二氧化碳吸附量为 3.29 mmol/g,在 40 °C 时为 4.76 mmol/g,表明其吸附能力随温度而变化。使用布鲁纳-埃美特-泰勒(BET)分析法测量发现,Co-Zn-Ce 氧化物 NPs 的比表面积为 167.346 m2/g,而 SA@Co-Zn-Ce 氧化物纳米复合材料的比表面积为 24.14 m2/g。BJH 分析显示 Co-Zn-Ce 氧化物 NPs 的平均孔径为 34.60 Å,SA@Co-Zn-Ce 氧化物 NCs 的平均孔径为 9.26 Å。虽然海藻酸钠固定在 Co-Zn-Ce 氧化物 NPs 上并没有增加复合材料的吸附位点和孔隙率,但从 N2 吸附-解吸等温线可以看出,SA@Co-Zn-Ce 氧化物 NCs 对 RR24 的光催化降解效率仍然很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信