Analysis of COVID-19 epidemic with intervention impacts by a fractional operator

S. Bhatter, Sangeeta Kumawat, Bhamini Bhatia, S. Purohit
{"title":"Analysis of COVID-19 epidemic with intervention impacts by a fractional operator","authors":"S. Bhatter, Sangeeta Kumawat, Bhamini Bhatia, S. Purohit","doi":"10.11121/ijocta.1515","DOIUrl":null,"url":null,"abstract":"This study introduces an innovative fractional methodology for analyzing the dynamics of COVID-19 outbreak, examining the impact of intervention strategies like lockdown, quarantine, and isolation on disease transmission. The analysis incorporates the Caputo fractional derivative to grasp long-term memory effects and non-local behavior in the advancement of the infection. Emphasis is placed on assessing the boundedness and non-negativity of the solutions. Additionally, the Lipschitz and Banach contraction theorem are utilized to validate the existence and uniqueness of the solution. We determine the basic reproduction number associated with the model utilizing the next generation matrix technique. Subsequently, by employing the normalized sensitivity index, we perform a sensitivity analysis of the basic reproduction number to effectively identify the controlling parameters of the model. To validate our theoretical findings, numerical simulations are conducted for various fractional order values, utilizing a two-step Lagrange interpolation technique. Furthermore, the numerical algorithms of the model are represented graphically to illustrate the effectiveness of the proposed methodology and to analyze the effect of arbitrary order derivatives on disease dynamics.","PeriodicalId":505378,"journal":{"name":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","volume":"23 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.1515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative fractional methodology for analyzing the dynamics of COVID-19 outbreak, examining the impact of intervention strategies like lockdown, quarantine, and isolation on disease transmission. The analysis incorporates the Caputo fractional derivative to grasp long-term memory effects and non-local behavior in the advancement of the infection. Emphasis is placed on assessing the boundedness and non-negativity of the solutions. Additionally, the Lipschitz and Banach contraction theorem are utilized to validate the existence and uniqueness of the solution. We determine the basic reproduction number associated with the model utilizing the next generation matrix technique. Subsequently, by employing the normalized sensitivity index, we perform a sensitivity analysis of the basic reproduction number to effectively identify the controlling parameters of the model. To validate our theoretical findings, numerical simulations are conducted for various fractional order values, utilizing a two-step Lagrange interpolation technique. Furthermore, the numerical algorithms of the model are represented graphically to illustrate the effectiveness of the proposed methodology and to analyze the effect of arbitrary order derivatives on disease dynamics.
用分数算子分析 COVID-19 流行病的干预影响
本研究引入了一种创新的分数方法来分析 COVID-19 的爆发动态,研究封锁、隔离和隔离等干预策略对疾病传播的影响。该分析结合了卡普托分式导数,以把握感染进展过程中的长期记忆效应和非局部行为。重点是评估解的有界性和非负性。此外,我们还利用 Lipschitz 和 Banach 收缩定理来验证解的存在性和唯一性。我们利用下一代矩阵技术确定了与模型相关的基本繁殖数。随后,通过使用归一化敏感性指数,我们对基本繁殖数进行了敏感性分析,从而有效地确定了模型的控制参数。为了验证我们的理论发现,我们利用两步拉格朗日插值技术对各种分数阶值进行了数值模拟。此外,该模型的数值算法以图形表示,以说明所提方法的有效性,并分析任意阶导数对疾病动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信