{"title":"Arrival and Departure Sequencing, Considering Runway Assignment Preferences and Crossings","authors":"Ji Ma, Daniel Delahaye, Man Liang","doi":"10.3390/aerospace11080604","DOIUrl":null,"url":null,"abstract":"Aircraft sequencing has the potential to decrease flight delays and improve operational efficiency at airports. This paper presents the aircraft sequencing problem (ASP) on multiple runways with complex interactions by allocating flights on runways and optimizing landing times, take-off times, and crossing times simultaneously in a uniform framework. The problem was formulated as a mixed-integer program considering realistic operational constraints, including runway assignment preferences based on the entry/exit fixes of the terminal maneuvering area (TMA), minimum runway separation, time window, and arrival crossing rules. Variable-fixing strategies were applied, to strengthen the formulation. A first-come-first-served (FCFS) heuristic was proposed for comparison. Various instances from the literature and from realistic data sets were tested. Our computational study showed that the solution approach optimizes runway schedules, to achieve significantly fewer flight delays, taking runway assignment preferences and arrival crossings into account.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Aircraft sequencing has the potential to decrease flight delays and improve operational efficiency at airports. This paper presents the aircraft sequencing problem (ASP) on multiple runways with complex interactions by allocating flights on runways and optimizing landing times, take-off times, and crossing times simultaneously in a uniform framework. The problem was formulated as a mixed-integer program considering realistic operational constraints, including runway assignment preferences based on the entry/exit fixes of the terminal maneuvering area (TMA), minimum runway separation, time window, and arrival crossing rules. Variable-fixing strategies were applied, to strengthen the formulation. A first-come-first-served (FCFS) heuristic was proposed for comparison. Various instances from the literature and from realistic data sets were tested. Our computational study showed that the solution approach optimizes runway schedules, to achieve significantly fewer flight delays, taking runway assignment preferences and arrival crossings into account.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.