Study the Effect of Ion Doping on ZnO Nanostructures for Room Temperature NH3 Gas Sensor

Ahmed Hussein, Hasanian Azeez, Roaa A. Abdalrahman, Mukhlis M Ismail, Sadeq H. Lafta
{"title":"Study the Effect of Ion Doping on ZnO Nanostructures for Room Temperature NH3 Gas Sensor","authors":"Ahmed Hussein, Hasanian Azeez, Roaa A. Abdalrahman, Mukhlis M Ismail, Sadeq H. Lafta","doi":"10.1149/2162-8777/ad670e","DOIUrl":null,"url":null,"abstract":"\n We investigated the impact of doping ion type on the performance of a ZnO-based ammonia gas sensor to show the capability of these ions to achieve high-performance gas sensing at room temperature. A sol-gel method was used to synthesize both doped and undoped ZnO nanostructures, while the gas sensor device was made by casting ZnO onto a glass substrate for uniform thin film. Then Al electrodes were attached to the film. The characterization was carried out via field-emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, UV-VIS, Pl luminescence, Brunnauer-Emmett-Teller, I-V characteristic, and gas sensor setup device. PL measurement shows an increase in green emission spectra with Ba ion shifting the peaks from VO to VO+ and VO+ to VO++ states. The gas sensor test conducted at room temperature shows great enhancement in performance for certain ions. The Ba ions greatly influence gas sensor performance, increasing the response to 24 compared to 5 for undoped ZnO. The room-temperature enhancement achieved by the Ba ions could open the way to investigate more effective dopants for NH3 gas sensors.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad670e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the impact of doping ion type on the performance of a ZnO-based ammonia gas sensor to show the capability of these ions to achieve high-performance gas sensing at room temperature. A sol-gel method was used to synthesize both doped and undoped ZnO nanostructures, while the gas sensor device was made by casting ZnO onto a glass substrate for uniform thin film. Then Al electrodes were attached to the film. The characterization was carried out via field-emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, UV-VIS, Pl luminescence, Brunnauer-Emmett-Teller, I-V characteristic, and gas sensor setup device. PL measurement shows an increase in green emission spectra with Ba ion shifting the peaks from VO to VO+ and VO+ to VO++ states. The gas sensor test conducted at room temperature shows great enhancement in performance for certain ions. The Ba ions greatly influence gas sensor performance, increasing the response to 24 compared to 5 for undoped ZnO. The room-temperature enhancement achieved by the Ba ions could open the way to investigate more effective dopants for NH3 gas sensors.
研究离子掺杂对用于室温 NH3 气体传感器的氧化锌纳米结构的影响
我们研究了掺杂离子类型对基于氧化锌的氨气传感器性能的影响,以显示这些离子在室温下实现高性能气体传感的能力。采用溶胶-凝胶法合成了掺杂和未掺杂的氧化锌纳米结构,而气体传感器装置则是在玻璃基底上浇铸出均匀的氧化锌薄膜。然后在薄膜上附着铝电极。通过场发射扫描电子显微镜、能量色散光谱、X 射线衍射、紫外-可见光谱、Pl 发光、Brunnauer-Emmett-Teller、I-V 特性和气体传感器装置进行了表征。PL 测量显示,随着 Ba 离子将峰从 VO 转变为 VO+ 和 VO+ 转变为 VO++ 状态,绿色发射光谱有所增加。在室温下进行的气体传感器测试表明,某些离子的性能大大提高。钡离子极大地影响了气体传感器的性能,与未掺杂 ZnO 的 5 个响应相比,钡离子将响应提高到 24 个响应。钡离子在室温条件下实现的性能提升为研究更有效的掺杂剂用于 NH3 气体传感器开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信