Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion

Keaton J. Brewster, J. Fosheim, Federico Municchi, Winfred R. Arthur-Arhin, Gregory S. Jackson
{"title":"Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion","authors":"Keaton J. Brewster, J. Fosheim, Federico Municchi, Winfred R. Arthur-Arhin, Gregory S. Jackson","doi":"10.52825/solarpaces.v2i.899","DOIUrl":null,"url":null,"abstract":"Oxide particles present a heat transfer and thermal energy storage (TES) media for next-generation concentrating solar power (CSP) plants where the high-temperature particle TES can provide dispatchable solar power [1]. Transferring heat to flowing particles can be a challenge and bubbling fluidization is a promising method for increased heat transfer between the oxide particles and confining walls. Using experimentally calibrated correlations for particle-wall heat transfer coefficients [2], this study explores in a quasi-1D model of a narrow-channel counterflow fluidized bed how the high heat transfer coefficients from bubbling fluidization enable cavity-based indirect particle receivers. Particle-wall heat transfer coefficients exceeding 800 W m-2 K-1 support angled solar fluxes > 200 kW m-2 from high normal fluxes > 1200 kW m-2 with wall temperatures < 900 oC. Parametric studies identify how gas flows, solar fluxes, and receiver heights impact receiver solar efficiency for a CSP plant. These modeling studies provide a basis for the development of an indirect narrow-channel fluidized particle receiver that has the potential to operate at normal solar fluxes over 1000 kW m-2 and solar efficiencies above 85%.","PeriodicalId":506238,"journal":{"name":"SolarPACES Conference Proceedings","volume":"61 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SolarPACES Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/solarpaces.v2i.899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxide particles present a heat transfer and thermal energy storage (TES) media for next-generation concentrating solar power (CSP) plants where the high-temperature particle TES can provide dispatchable solar power [1]. Transferring heat to flowing particles can be a challenge and bubbling fluidization is a promising method for increased heat transfer between the oxide particles and confining walls. Using experimentally calibrated correlations for particle-wall heat transfer coefficients [2], this study explores in a quasi-1D model of a narrow-channel counterflow fluidized bed how the high heat transfer coefficients from bubbling fluidization enable cavity-based indirect particle receivers. Particle-wall heat transfer coefficients exceeding 800 W m-2 K-1 support angled solar fluxes > 200 kW m-2 from high normal fluxes > 1200 kW m-2 with wall temperatures < 900 oC. Parametric studies identify how gas flows, solar fluxes, and receiver heights impact receiver solar efficiency for a CSP plant. These modeling studies provide a basis for the development of an indirect narrow-channel fluidized particle receiver that has the potential to operate at normal solar fluxes over 1000 kW m-2 and solar efficiencies above 85%.
具有轴向弥散功能的间接流化床颗粒接收器的降序建模
氧化物颗粒是下一代聚光太阳能(CSP)发电厂的传热和热能储存(TES)介质,高温颗粒 TES 可提供可调度的太阳能[1]。向流动颗粒传递热量是一项挑战,而气泡流态化是增加氧化物颗粒与密闭壁之间热量传递的一种可行方法。本研究利用经实验校准的颗粒-壁热传导系数相关性[2],在窄通道逆流流化床的准一维模型中探讨了气泡流化产生的高热传导系数如何实现基于空腔的间接颗粒接收器。粒子壁传热系数超过 800 W m-2 K-1,支持角度太阳通量大于 200 kW m-2,而正常通量大于 1200 kW m-2,壁温小于 900 oC。参数研究确定了气体流量、太阳通量和接收器高度如何影响 CSP 发电厂的接收器太阳能效率。这些建模研究为开发间接窄通道流化粒子接收器奠定了基础,该接收器有可能在正常太阳通量超过 1000 kW m-2 和太阳效率超过 85% 的情况下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信