Alexander Zolan, Chad Augustine, Evan Westphal, Ken Armijo, Ye Wang, John Pye
{"title":"Impact of Temperature and Optical Error on the Combined Optical and Thermal Efficiency of Solar Tower Systems for Industrial Process Heat","authors":"Alexander Zolan, Chad Augustine, Evan Westphal, Ken Armijo, Ye Wang, John Pye","doi":"10.52825/solarpaces.v2i.866","DOIUrl":null,"url":null,"abstract":"Concentrating solar thermal (CST) power towers can provide high flux concentrations at commercial scale. As a result, CST towers exhibit potential for high-temperature solar industrial process heat (SIPH) applications. However, at higher operating temperatures, thermal radiation losses can be significant. This study explores the trade-off between thermal and optical losses for SIPH applications using a collection of three case studies at operating temperatures that range from 900-1,550 °C. We assume blackbody radiation to represent the thermal losses at the receiver and we use ray tracing to estimate the optical losses. The results show the impact of process temperature on the maximum attainable system efficiency, as well as the higher flux concentration requirements as the temperature increases.","PeriodicalId":506238,"journal":{"name":"SolarPACES Conference Proceedings","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SolarPACES Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/solarpaces.v2i.866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Concentrating solar thermal (CST) power towers can provide high flux concentrations at commercial scale. As a result, CST towers exhibit potential for high-temperature solar industrial process heat (SIPH) applications. However, at higher operating temperatures, thermal radiation losses can be significant. This study explores the trade-off between thermal and optical losses for SIPH applications using a collection of three case studies at operating temperatures that range from 900-1,550 °C. We assume blackbody radiation to represent the thermal losses at the receiver and we use ray tracing to estimate the optical losses. The results show the impact of process temperature on the maximum attainable system efficiency, as well as the higher flux concentration requirements as the temperature increases.