Diseño de una aplicación para detectar covid-19 mediante redes neuronales convolucionales e imágenes de rayos X

Carlos Eduardo Belman López
{"title":"Diseño de una aplicación para detectar covid-19 mediante redes neuronales convolucionales e imágenes de rayos X","authors":"Carlos Eduardo Belman López","doi":"10.15174/au.2024.3919","DOIUrl":null,"url":null,"abstract":"This research presents the design of an application to detect covid-19 using convolutional neural networks and X-ray images in two scenarios (covid/Non-covid and covid/Normal/Pneumonia). To avoid overfitting online data augmentation, dropout, batch normalization, and Adam optimizer was used. The three-class network was used as a pre-trained model, tuning only the dense and output layers to obtain the binary model. Additionally, hyper-parameter optimization was used to get dropout probabilities, activation functions, and neurons. The learning rate was adjusted using callbacks to avoid local optimums. Networks were converted to TensorFlow.js format and embedded locally in a hybrid application using Ionic and Capacitor and were deployed through Firebase to help provide diagnostics. The application obtained an accuracy of 98.61% and 96.48% for two and three classes, respectively, achieving higher performance when compared to other proposals (offline models) in the literature and using fewer training parameters.","PeriodicalId":502152,"journal":{"name":"Acta Universitaria","volume":"54 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15174/au.2024.3919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents the design of an application to detect covid-19 using convolutional neural networks and X-ray images in two scenarios (covid/Non-covid and covid/Normal/Pneumonia). To avoid overfitting online data augmentation, dropout, batch normalization, and Adam optimizer was used. The three-class network was used as a pre-trained model, tuning only the dense and output layers to obtain the binary model. Additionally, hyper-parameter optimization was used to get dropout probabilities, activation functions, and neurons. The learning rate was adjusted using callbacks to avoid local optimums. Networks were converted to TensorFlow.js format and embedded locally in a hybrid application using Ionic and Capacitor and were deployed through Firebase to help provide diagnostics. The application obtained an accuracy of 98.61% and 96.48% for two and three classes, respectively, achieving higher performance when compared to other proposals (offline models) in the literature and using fewer training parameters.
利用卷积神经网络和 X 射线成像设计一款检测 covid-19 的应用程序。
本研究介绍了利用卷积神经网络和 X 光图像在两种情况(恶性/非恶性和恶性/正常/肺炎)下检测恶性-19 的应用设计。为了避免过拟合,使用了在线数据增强、剔除、批量归一化和亚当优化器。三类网络被用作预训练模型,只对密集层和输出层进行调整,以获得二元模型。此外,还使用了超参数优化来获得辍学概率、激活函数和神经元。学习率通过回调进行调整,以避免局部最优。网络被转换为 TensorFlow.js 格式,并使用 Ionic 和 Capacitor 本地嵌入到混合应用程序中,并通过 Firebase 进行部署,以帮助提供诊断。与文献中的其他建议(离线模型)相比,该应用程序使用更少的训练参数,分别获得了 98.61% 和 96.48% 的两类和三类准确率,实现了更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信