Parameter estimation from the Lyα forest in the Fourier space using an information-maximizing neural network

Soumak Maitra, S. Cristiani, Matteo Viel, Roberto Trotta, G. Cupani
{"title":"Parameter estimation from the Lyα forest in the Fourier space using an information-maximizing neural network","authors":"Soumak Maitra, S. Cristiani, Matteo Viel, Roberto Trotta, G. Cupani","doi":"10.1051/0004-6361/202450259","DOIUrl":null,"url":null,"abstract":"Our aim is to present a robust parameter estimation with simulated forest spectra from Sherwood-Relics simulations suite by using an information-maximizing neural network (IMNN) to extract maximal information from 1D-transmitted flux in the Fourier space. We performed 1D estimations using IMNN for intergalactic medium (IGM) thermal parameters $T_0$ and gamma at $z=2-4$, and cosmological parameters $ and s $ at $z=3-4$. We compared our results with estimates from the power spectrum using the posterior distribution from a Markov Chain Monte Carlo (MCMC). We then checked the robustness of IMNN estimates against deviation in spectral noise levels, continuum uncertainties, and instrumental smoothing effects. Using mock forest sightlines from the publicly available CAMELS project, we also checked the robustness of the trained IMNN on a different simulation. As a proof of concept, we demonstrated a 2D-parameter estimation for $T_0$ and photoionization rates, $ HI We obtain improved estimates of $T_0$ and gamma using IMNN over the standard MCMC approach. These estimates are also more robust against signal-to-noise deviations at $z=2$ and 3. At $z=4$, the sensitivity to noise deviations is on par with MCMC estimates. The IMNN also provides $T_0$ and gamma estimates that are robust against continuum uncertainties by extracting small-scale continuum-independent information from the Fourier domain. In the cases of $ and s $, the IMNN performs on par with MCMC but still offers a significant speed boost in estimating parameters from a new dataset. \nThe improved estimates with IMNN are seen for high instrumental resolution (FWHM=6 At medium or low resolutions, the IMNN performs similarly to MCMC, suggesting an improved extraction of small-scale information with IMNN. We also find that IMNN estimates are robust against the choice of simulation. By performing a 2D-parameter estimation for $T_0$ and $ HI $, we also demonstrate how to take forward this approach observationally in the future.","PeriodicalId":8585,"journal":{"name":"Astronomy & Astrophysics","volume":"54 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our aim is to present a robust parameter estimation with simulated forest spectra from Sherwood-Relics simulations suite by using an information-maximizing neural network (IMNN) to extract maximal information from 1D-transmitted flux in the Fourier space. We performed 1D estimations using IMNN for intergalactic medium (IGM) thermal parameters $T_0$ and gamma at $z=2-4$, and cosmological parameters $ and s $ at $z=3-4$. We compared our results with estimates from the power spectrum using the posterior distribution from a Markov Chain Monte Carlo (MCMC). We then checked the robustness of IMNN estimates against deviation in spectral noise levels, continuum uncertainties, and instrumental smoothing effects. Using mock forest sightlines from the publicly available CAMELS project, we also checked the robustness of the trained IMNN on a different simulation. As a proof of concept, we demonstrated a 2D-parameter estimation for $T_0$ and photoionization rates, $ HI We obtain improved estimates of $T_0$ and gamma using IMNN over the standard MCMC approach. These estimates are also more robust against signal-to-noise deviations at $z=2$ and 3. At $z=4$, the sensitivity to noise deviations is on par with MCMC estimates. The IMNN also provides $T_0$ and gamma estimates that are robust against continuum uncertainties by extracting small-scale continuum-independent information from the Fourier domain. In the cases of $ and s $, the IMNN performs on par with MCMC but still offers a significant speed boost in estimating parameters from a new dataset. The improved estimates with IMNN are seen for high instrumental resolution (FWHM=6 At medium or low resolutions, the IMNN performs similarly to MCMC, suggesting an improved extraction of small-scale information with IMNN. We also find that IMNN estimates are robust against the choice of simulation. By performing a 2D-parameter estimation for $T_0$ and $ HI $, we also demonstrate how to take forward this approach observationally in the future.
利用信息最大化神经网络从傅里叶空间中的 Lyα 森林进行参数估计
我们的目的是使用信息最大化神经网络(IMNN)从傅立叶空间的一维传输通量中提取最大信息,利用来自舍伍德-雷利克斯模拟套件的模拟森林光谱进行稳健的参数估计。我们使用 IMNN 对星系际介质(IGM)热参数 $T_0$ 和伽马在 $z=2-4$ 以及宇宙学参数 $ 和 s $ 在 $z=3-4$ 进行了一维估计。我们利用马尔可夫链蒙特卡罗(MCMC)的后验分布,将我们的结果与功率谱的估计值进行了比较。然后,我们检验了 IMNN 估计值对频谱噪声水平偏差、连续体不确定性和仪器平滑效应的稳健性。利用公开的 CAMELS 项目中的模拟森林视线,我们还在不同的模拟中检验了训练有素的 IMNN 的稳健性。作为概念验证,我们演示了 $T_0$ 和光电离率的二维参数估计,$ HI 我们利用 IMNN 获得了比标准 MCMC 方法更好的 $T_0$ 和伽马估计值。在 $z=2$ 和 3 时,这些估计值对信噪比偏差也更加稳健。在 $z=4$ 时,对噪声偏差的敏感度与 MCMC 估计值相当。IMNN 还通过从傅立叶域提取与连续介质无关的小尺度信息,提供对连续介质不确定性具有鲁棒性的 $T_0$ 和伽马估计值。在 $ 和 s $ 的情况下,IMNN 的性能与 MCMC 相当,但在从新数据集估计参数时仍能显著提高速度。在仪器分辨率较高(FWHM=6)的情况下,IMNN 的估计结果有所改善。在中低分辨率下,IMNN 的表现与 MCMC 相似,这表明 IMNN 对小尺度信息的提取有所改善。我们还发现,IMNN 估计值对模拟选择具有稳健性。通过对 $T_0$ 和 $HI $ 进行二维参数估计,我们还展示了如何在未来的观测中推进这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信