{"title":"A Unique Conditions Model for Landslide Susceptibility Mapping","authors":"F. De Smedt, P. Kayastha","doi":"10.3390/geosciences14080197","DOIUrl":null,"url":null,"abstract":"Several methods and approaches have been proposed to assess landslide susceptibility. The likelihood of landslides occurring can be determined by applying statistical models to historical landslides, taking into account controlling factors. Popular methods for predicting the probability of landslides are weights-of-evidence and logistic regression. We discuss the assumptions and interpretations of these methods, the relationships between them, and their strengths and weaknesses in case of categorical factors. Of particular interest is the conditional independence of the controlling factors and its effect on model bias. To avoid lack of conditional independence of factors and model bias, we present a unique conditions model that is always unbiased. To illustrate the theoretical developments, a practical application is given using observed landslides and geo-environmental factors from a previous study. The unique conditions model appears superior to the other models.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"60 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences14080197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Several methods and approaches have been proposed to assess landslide susceptibility. The likelihood of landslides occurring can be determined by applying statistical models to historical landslides, taking into account controlling factors. Popular methods for predicting the probability of landslides are weights-of-evidence and logistic regression. We discuss the assumptions and interpretations of these methods, the relationships between them, and their strengths and weaknesses in case of categorical factors. Of particular interest is the conditional independence of the controlling factors and its effect on model bias. To avoid lack of conditional independence of factors and model bias, we present a unique conditions model that is always unbiased. To illustrate the theoretical developments, a practical application is given using observed landslides and geo-environmental factors from a previous study. The unique conditions model appears superior to the other models.