{"title":"Multi-material 3D Nanoprinting for Structures to Functional Micro/nanosystems","authors":"Y. Duan, Wenshuo Xie, Zhouping Yin, Y. Huang","doi":"10.1088/2631-7990/ad671f","DOIUrl":null,"url":null,"abstract":"\n Multi-material 3D fabrication at the nanoscale has been a long-sought goal in additive manufacturing, with great potential for the direct construction of functional micro/nanosystems rather than just arbitrary 3D structures. To achieve this goal, researchers have introduced several nanoscale 3D printing principles, explored various multi-material switching and combination strategies, and demonstrated their potential applications in 3D integrated circuits, optoelectronics, biological devices, micro/nanorobots, etc. Although some progress has been made, it is still at the primary stage and a serious breakthrough is needed to directly construct functional micro/nano systems. In this perspective, the development, current status and prospects of multi-material 3D nanoprinting are presented. We envision that this 3D printing will unlock innovative solutions and make significant contributions to various technologies and industries in the near future.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"53 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad671f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-material 3D fabrication at the nanoscale has been a long-sought goal in additive manufacturing, with great potential for the direct construction of functional micro/nanosystems rather than just arbitrary 3D structures. To achieve this goal, researchers have introduced several nanoscale 3D printing principles, explored various multi-material switching and combination strategies, and demonstrated their potential applications in 3D integrated circuits, optoelectronics, biological devices, micro/nanorobots, etc. Although some progress has been made, it is still at the primary stage and a serious breakthrough is needed to directly construct functional micro/nano systems. In this perspective, the development, current status and prospects of multi-material 3D nanoprinting are presented. We envision that this 3D printing will unlock innovative solutions and make significant contributions to various technologies and industries in the near future.